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INTRODUCTION

The vast number of protein three-dimensional (3D) structures

available in the PDB1 provides an invaluable resource to investi-

gate function, evolution, and the complex relationship among

them. Commonly proteins are compared and classified based on

their sequence2 or tertiary structure.3,4 However, if the main goal

is the elucidation of protein function, a more intuitive approach

would be to compare protein surface shapes and also physico-

chemical properties, such as electrostatic potential or hydropho-

bicity, which can be mapped on to a protein surface. This is also

supported by the fact that such properties have a significant role

in influencing molecular interactions.5

Several methods have been proposed on the comparison of

physicochemical properties of proteins. The Carbo and Hodgkin

indices,6,7 which compute inner products of electrostatic poten-

tials of two proteins, have been used to compare electron den-

sities, electrostatic potentials, and electrostatic fields of small mole-

cules.6–9 Wade et al. have developed a method which compares

the electrostatic potential on the surrounding region of a protein,

which is less sensitive to small changes in protein structure.10

Their method was used to analyze the relationship of electrostatic

potentials and biological function of several proteins and ligand

molecules, including plecstrin homology domain family, blue cop-

per proteins, and proteins in the ubiquitination pathway.10–14

Pawlowski and Godzik15,16 introduced a method that maps pro-
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ABSTRACT

The mapping of physicochemical characteristics onto

the surface of a protein provides crucial insights

into its function and evolution. This information

can be further used in the characterization and

identification of similarities within protein surface

regions. We propose a novel method which quantita-

tively compares global and local properties on the

protein surface. We have tested the method on com-

parison of electrostatic potentials and hydrophobic-

ity. The method is based on 3D Zernike descriptors,

which provides a compact representation of a given

property defined on a protein surface. Compactness

and rotational invariance of this descriptor enable

fast comparison suitable for database searches. The

usefulness of this method is exemplified by studying

several protein families including globins, thermo-

philic and mesophilic proteins, and active sites of

TIM b/a barrel proteins. In all the cases studied, the

descriptor is able to cluster proteins into function-

ally relevant groups. The proposed approach can

also be easily extended to other surface properties.

This protein surface-based approach will add a new

way of viewing and comparing proteins to conven-

tional methods, which compare proteins in terms of

their primary sequence or tertiary structure.
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tein surface properties to a unit sphere. This method is

advantageous in the sense that it is less sensitive to noise

and that it can map multiple properties. However, as the

nature of the sphere mapping, cavities on the protein

surface are not properly represented. Moreover, a major

drawback of these approaches is that proteins have to be

prealigned using some scheme in order to determine cor-

responding regions. This step is often time consuming

and may not always yield a unique solution especially in

cases where structural similarity is low. The multiresolu-

tion attributed contour tree method compares relative

positions of electrostatic potentials on protein surfaces as

a tree and does not needs any prior alignment.17 How-

ever, its performance is offset by the high time complex-

ity owing to the tree matching and is found to be only as

effective as the Carbo index.

Here, we propose a novel method for comparing prop-

erties defined on the protein surface using the 3D Zer-

nike descriptor (3DZD).18,19 This descriptor is a series

expansion of an input 3D function with several interest-

ing features. First, a given property can be represented by

a short vector of numbers (the coefficients of terms in

the series) making it amenable to fast comparison. Also,

the prealignment step that is crucial to some of the

methods can be avoided as the 3DZDs are rotation and

translation invariant. This enables the comparison of

nonhomologous proteins, where structure alignment can

be unreliable. Another important feature is that the reso-

lution of the representation can be easily altered by sim-

ply changing the order of 3DZD.

In our previous paper,19 we have demonstrated that

the 3DZD effectively captures protein surface shape simi-

larity and is capable of searching similar protein struc-

tures from a PDB database in a real-time (http://dragon.

bio.purdue.edu/3d-surfer/). We have also shown examples

of proteins whose overall surface shape is similar due to

their functional relevance, but do not share significant

sequence or backbone conformation similarity. In this ar-

ticle, following the description of data set and methods,

we first present a simple example of unit spheres to dem-

onstrate that different property patterns can be discrimi-

nated by the 3DZD. We then extend this to more biolog-

ical context and show that the descriptors can quantita-

tively compare electrostatic and hydrophobic properties

of evolutionary diverse protein families.

MATERIALS AND METHODS

Data sets

The representative set consists of 184 protein struc-

tures, each of which are arbitrarily selected from different

fold groups defined in a protein classification database by

the Combinatorial Extension (CE) program.4 These

structures have a crystallographic resolution of 3.0 Å or

higher, have no more than 10 missing residues in the

structure solved, have all heavy atom positions solved,

and are longer than 100 residues. Also, the structure sim-

ilarity of each pair is less than a Z-score of 3.8 by CE.

The 43 globin structures are selected from globin fam-

ily structures in the SCOP database.20 They have less

than 70% sequence identity with each other. The 19 TIM

barrel proteins are selected, one from each family classi-

fied in Table 2 by Nagano et al.21 A binding site of a

TIM barrel protein is defined as the surface region that is

closer than 3.5 Å to any atom of its ligand.

Surface representation

Protein surfaces are calculated using the Connolly mo-

lecular surface package (MSP).22 Surface is then made

discrete by placing it on a cubic grid. To represent a sur-

face shape, each grid cell (voxel) is assigned 1 if it is on

the surface and 0 otherwise. Values of other physico-

chemical properties, such as the electrostatic potentials,

are also assigned only to the surface voxels. The electro-

static potentials are computed by APBS23 and hydropho-

bicity values are taken from the eF-site database.24 The

resulting voxels with values on them are considered as a

3D function, f(x), which is expanded into the 3DZD as

described in the next section.

3D Zernike descriptor

3DZD is a series expansion of a 3D function, which

allows a compact representation of a 3D object (i.e., a

3D function). Mathematical foundation of the 3DZD was

laid by Canterakis25 then Novotni and Klein18 have

applied it to 3D shape retrieval. Below we provide brief

mathematical derivation of the 3DZD. See the two

papers18,25 for more details.

To obtain a 3DZD, given 3D function f(x) is expanded

into a series in terms of Zernike-Canterakis basis18

defined by the collection of functions

Zm
nl ðr; #;uÞ ¼ RnlðrÞYm

l ð#;uÞ ð1Þ

with 2l < m < l, 0 � l � n, and (n 2 l) even. Spherical

harmonics,26 Yml (#,u), is the angular portion of an or-

thogonal set of solutions to Laplace’s equation, which is

given by:

Ym
i ð#;uÞ ¼ Nm

l P
m
l ðcos#Þeimu; ð2Þ

where Nl
m is a normalization factor,

Nm
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
ðl �mÞ!
ðl þmÞ! ;

s
ð3Þ
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and Pl
m is the associated Legendre function. Rnl(r) are radial

functions defined by Canterakis, constructed so that

Znl
m(r,#,u) are polynomials when written in terms of Carte-

sian coordinates. Znl
m(r,#,u), which are currently written in

spherical coordinates, are converted into Cartesian coordi-

nate functions Znl
m(x) in the following three steps:

1. The conversion between spherical coordinates, (r,#,u),
and Cartesian coordinates, x 5 (x,y,z), is defined as

x ¼ jxjf ¼ rf ¼ rðsin# sinu; sin# cosu; cosuÞ ð4Þ

2. Using Eq. (4), we define a function el
m in Cartesian

coordinates, which is later used for rewriting the 3D

Zernike function [Eq. (1)] into Cartesian coordinates.

The harmonics polynomials el
m are defined as

eml ðxÞ � rlYm
l ð#;uÞ ¼ rlcml

ix � y

2

� �m

3 zl�m
Xl�m

2b c

l¼0

l

l

� �
l � l
mþ l

� �
� x2 þ y2

4z2

� �l

; ð5Þ

where cl
m are normalization factors

cml ¼ c�m
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l þ 1Þðl þmÞ!ðl �mÞ!p
l!

: ð6Þ

3. Using the harmonics polynomials el
m, 3D Zernike

functions [Eq. (1)] can be rewritten in Cartesian coor-

dinates:

Zm
nl ðxÞ ¼ RnlðrÞYm

l ð#;uÞ ¼
Xk
v¼0

qvkl
��x��2vrl

 !
� Ym

l ð#;uÞ

¼
Xk
v¼0

qvkl
��x��2v

 !
� eml ðxÞ ð7Þ

where 2k 5 n 2 l and the coefficient qkl
v are deter-

mined as follows to guarantee the orthonormality of

the functions within the unit sphere,

qvkl ¼
ð�1Þk
22k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 4k þ 3

3

r
2k

k

� �
ð�1Þv

3

k

v

� �
2ðk þ l þ vÞ þ 1

2k

� �
k þ l þ v

k

� � : ð8Þ

Now 3D Zernike moments of f(x) are defined as

the coefficients of the expansion in this orthonormal

basis, that is, by the formula

Xm
nl ¼

3

4p

Z
jxj�1

f ðxÞZm
nlðxÞdx: ð9Þ

Finally, the moments are collected into (2l 1 1)

dimensional vectors Xnl 5 (Xnl
l, Xnl

l21, Xnl
l22, Xnl

l23, . . . ,
Xnl

2l) and the rotational invariance is obtained by

defining 3DZD, Fnl, as norms of vectors Xnl:

Fnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm¼1

m¼�1

ðXm
nlÞ2

vuut ð10Þ

The parameter n is called the order of 3DZD. The order

determines the resolution (i.e., the number of terms in

the series expansion) of the descriptor. As stated earlier,

n defines the range of l, and a 3DZD is a series of invari-

ants [Eq. (10)] for each pair of n and l, where n ranges

from 0 to the specified order. For example, n ranges

from 0 to 20 for a 3DZD of an order of 20. We use n 5
20, which yields a total of 121 invariants, because it is

shown to provide sufficient accuracy in a previous works

of shape comparison.18 The rotational invariance of

3DZD means that calculating Fnl for a protein and its

rotated versions would yield the same descriptor.

As for the surface electrostatic potentials, 3DZD is

computed separately for the pattern of positive values

and for the negative values and later combined in the fol-

lowing way: First, voxels with a positive electrostatic

potential value are kept but all the other voxels with a

negative electrostatic potential value are reset with a

value of zero. Then 3DZD of the pattern of the positive

values in the cubic grid is computed. Next, similarly,

voxels with a negative electrostatic potential value are

kept but all the other voxels are reset with a value of

zero. Then 3DZD of the pattern of the negative values is

computed. Then, the two 3DZDs, one for voxels with a

positive value and another one for voxels with a negative

value are combined, yielding a descriptor with 2 3 121–

242 invariants. This is because Eq. (10) does not differen-

tiate positive and negative values, but only a pattern of

non-zero values in the 3D space, as will be seen in Figure

1. Finally, we normalize numbers in a descriptor by the

norm of the descriptor. This normalization is found to

reduce dependency of 3DZD on the number of voxels

used to represent a protein.

Similarity measures

Two distances are used to compare 3DZDs. The Eu-

clidean distance (EUC) is defined as

EUC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼N

i¼1
ðzAi � zBiÞ2

r
ð11Þ
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where ZAi and ZBi is the i-th invariant of 3DZD of pro-

tein A and B, respectively. N is set to 121 for comparing

surface shape and 242 for comparing surface electro-

statics of the two proteins. The correlation coefficient

based distance (CC), is defined as

CC ¼ 1� rðZA;ZBÞ; ð12Þ

where {r|21 � r � 1} is the correlation coefficient of

two 3DZDs. CC is 0 when two 3DZDs correlate perfectly,

that is, when they have the correlation coefficient of 1.

Both EUC and CC range from 0 to 2.

The similarity indices by Hodkins and Carbo were cal-

culated using the ‘‘similar’’ program in the APBS pack-

age. To make the range consistent with EUC and CC, we

modified the distance as follows:

CL2 ¼ 1� SICarboðA;BÞ ð13Þ

HL2 ¼ 1� SIHodgkinsðA;BÞ ð14Þ

HL2 and CL2 are modified L2 inner products of voxel

values which equals to 0 when identical, 1 when unre-

lated, and 2 when opposite.

Calculation speed

Comparison of two 3DZDs is much faster than HL2

and CL2 indices, as the latter considers the whole grid

while the former only evaluates coefficients. Pairwise

comparison of 3DZD takes about 0.05 sec while HL2 or

CL2 takes 50 sec on an average when the grid size is set

to 193.3 Preprocessing consists of running APBS and

computing the 3DZD. Calculating electrostatics for a

protein using APBS takes �1.5 min, and computing a

single 3DZD from an APBS output file takes under a 1 min.

RESULTS

Clustering of color patterns on spheres

Similarity assessments combining both surface shape

and property provide a meaningful comparison of pro-

teins. Previous works have shown that 3DZDs can be

used for identifying global molecular surface shape simi-

larity.19,27 Here to examine the effectiveness of 3DZD in

distinguishing different surface properties, we cluster

nine unit spheres with different color patterns.

The surface of a unit sphere is equally partitioned into

eight sections and voxels of each section are assigned a

value of either 11.0 (blue) or 21.0 (red). The nine

spheres, S0–S8 are distributed according to the complete

linkage clustering method using CC [Eq. (12)] of 3DZDs

[Fig. 1(A)]. These spheres are primarily clustered by the

number of positive voxels relative to the number of nega-

tive voxels, that is, S0 to S8 are arranged in the decreas-

ing order of blue sections on the spheres. However, an

interesting cluster is observed with S3, S4, and S5. The

total area of blue sections of the three spheres is the

same. However, S4 is more similar to S5 in that both S4

and S5 are partitioned into two areas while S3 is parti-

tioned into four. In contrast, naı̈ve application of the

original 3DZD18 only recognizes the contrast of patterns

of the positive and the negative value but not the value

itself [Fig. 1(B)]. Thus it is not able to distinguish S0

from S8 or S1 from S7. Our approach is able to obtain

Figure 1
Analysis of coloring patterns on spheres using complete linkage clustering. (A) the clustering results when the 3DZD of the areas of positive values and the negative values

are separately computed (thus 242 invariants are used); (B) the result using the original 3DZD (i.e., 121 invariants are used).
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the clustering of the nine spheres by combining two

3DZDs separately computed for blue and red sections.

Distance distribution of random protein
pairs and the globin family

Next, in order to obtain an idea of the distance distri-

bution of proteins using the 3DZD, we have performed a

comparison study on 184 representative proteins and 43

globins. The CC and the EUC [Eq. (11)] of the surface

shape, the electrostatic potential, and the hydrophobicity

are shown in Figure 2. The globin family is used because

they are known to have a conserved fold with a wide var-

iation in sequence28 and function29,30; thus high simi-

larity in surface shapes but some diversity in electrostatic

potential and hydrophobicity were expected. The root

mean square deviation (RMSD) of pairs of the 43 globins

ranges from 0.57 to 3.66 Å computed by the CE program

and the sequence identity from 6.2 to 69.0%.

The CC of surface shape of the representative proteins

ranges from 0.008 to 0.723 with the peak value of 0.095

[Fig. 2(A)]. The majority of the protein pairs have a

small distance because they are globular and compact.

The hydrophobicity has a narrower distribution [Fig.

2(B)]. This is partially due to the residue-based assign-

ment of hydrophobicity values using the Kyte-Doolittle

scale,31 which does not produce much diversity in

patterns compared to that of electrostatic potential. The

CC of the electrostatic potentials [Fig. 2(C)] does not have

a strong correlation to that of the surface shape [Fig. 2(D)].

This result is advantageous for comparing proteins because

a combination of shape and electrostatics can provide a

hierarchical classification of protein surfaces.

Compared to the representative set of proteins, the sur-

face shape of globins is significantly more similar to each

other [Fig. 2(A)]. In contrast, the electrostatic potentials

of globins show less variability as compared to that of the

representative set but distributed over a wide range. This

is suggestive of the diversity of functions within the globin

family [Fig. 2(C)]. The distance distributions of CL2 and

HL2 [Eqs. (13) and (14)] are also shown in Figure 2(C).

Note that both CL2 and HL2 rely on superimposition,

which in the case of the representative set could not be

performed given the poor structural similarity. The CL2

and HL2 have a skewed distribution near 1.0, which

means that there is very low similarity between the com-

pared globin proteins, implying that these two metrics are

sensitive to the difference in the electrostatic potentials of

the globin proteins. Structural superimposition of globins

for computing CL2 and HL2 is computed by PyMol in

the data shown in Figure 2(C). We also used CE for the

superimposition, which yielded essentially the same distri-

bution as Figure 2(C). Therefore, CL2 and HL2 may be

suitable to compare electrostatics of very closely related

proteins, but difficult to provide meaningful similarity

metrics for more general use.

Using the representative protein set, we have examined

how changing the order of 3DZDs affects to calculated

distances of the surface electrostatic potentials. Figure 3

shows histograms of the CC distance of the electrostatic

potentials of pairs of proteins in the representative set

using different orders. Significantly different histograms

are obtained when 3DZDs with a smaller order is used

(e.g., the order of less than 10) but the histograms almost

converge when a higher order is used. Therefore, it will

not be necessary to use further higher order in describing

the surface electrostatic potentials.

Figure 4 shows examples of the surface electrostatics

and 3DZD of several globin proteins. First, the pair of

globins that exhibit the largest electrostatic potential dif-

ference according to 3DZD are shown [Fig. 4(A)]. 1h97A

and 1hbg are monomeric hemoglobins from different

organisms which are known to display extremely different

oxygen affinity because of the different disposition of

amino acids in their heme binding pockets.32,33 This

apparent difference in the surface electrostatics [Fig.

4(A), top panel] is captured by the 3DZD (the middle

panel). The higher value in the first 121 invariants of

1hbg indicates dominance of the positive electrostatic

Figure 2
Distribution of the 3DZD distances using representative (repr.) protein set and

the globins. (A) the distance of protein surface shape. The minimum (min) and

maximum (max) value of the CC of the repr. set and the globin set is (0.008,

0.723) and (0.000, 0.354), respectively. The min and max value of the EUC of

the representative set and the globin set is (0.059, 0.546) and (0.001, 0.366),

respectively. (B) the distances of surface hydrophobicity. The (min, max) value

of the CC of the repr. set, the globin set, the EUC of the repr. set, and the globin

set is (0.0188, 0.993), (0.0267, 0.274), (0.107, 0.760), and (0.099, 0.384),

respectively. (C) the distance of the surface electrostatic potentials. The (min,

max) value of the CC of the repr. set, the globin set, the EUC of the repr. set,

and the globin set is (0.011, 1.829), (0.043, 1.275), (0.090, 1.241), and (0.151,

0.787), respectively. The distribution of the CL2 and HL2 are also shown. HL2

and CL2 happened to have the almost identical distribution. The (min, max)

value of the CL2 (HL2) of globins is (0.473, 1.019). (D) Correlation of the

distance of surface shape and electrostatic potential of proteins in the

representative set.
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potential on the surface. Likewise, 1hbg has more hydro-

phobic regions than 1h97A, which is conveyed by the

higher values in the first 121 invariants in the third panel

of Figure 4(A).

Figure 4(B) further shows examples of globin proteins of

diverse functions. 1gdi is a leghemoglobin from Lupinus

luteus, that functions as a monomer in root nodules to reg-

ulate oxygen by the nitrogen-fixing aerobic bacteria.34 1myt

is a monomeric myoglobin from yellowfin tuna. 1oj6A is

human brain neuroglobin, whose role is to sustain oxygen

supply at highly oxygen-demanding and metabolically

active cells like neurons.35 Besides, it has a larger binding

cavity that displays a hexa-coordinated heme. It has a more

negative surface electrostatic potential, which produces a

large 3DZD distance value for 1myt and 1ux8A. 1ux8A

belongs to the group II truncated oxygen-avid hemoglobin

from Bacillus subtilis. Truncated hemoglobin is about 20

residues shorter than the full length globins.36 This struc-

tural difference is reflected in the large RMSD values

obtained for the other three globins. The four globins

shown here are all monomeric, but have a distant evolution-

ary relationship (i.e., the sequence identity between them is

low), a varied range of affinity to oxygen, and different

functions and also are located in different environments.

These differences coincide with the relatively large distance

of surface electrostatic potentials measured by 3DZD.

Thermophilic and mesophilic proteins

Thermophilic proteins have gained substantially higher

thermal stabilities as compared to their mesophilic ortho-

logs, and the underlying principle for the stability has

been a subject of intensive discussion for the past few

years.37–39 Among the different properties studied, elec-

trostatic contributions, especially surface electrostatics,

has been identified as one of the major stabilization fac-

tors.37,39 Therefore, a method for robust and quantita-

tive comparison of surface electrostatics will lead to a

better understanding of thermostability of proteins. Here,

as a demonstration that 3DZD can cluster proteins into

functionally relevant groups, surface electrostatics of a

total of 14 thermophilic and mesophilic proteins from

three families are compared: the dihydrofolate reductase

(DIR) family, the glutamate dehydrogenase (GDH) fam-

ily, and the TATA box binding protein (TBP) family.

The three DIRs [Fig. 5(A)] are interesting examples

where the similarity based on surface electrostatics is

not inferred from either sequence or structure. 1dyjA

Figure 3
Histograms of the CC of the electrostatic potentials of the representative protein

set using different number of orders. (A) histograms of 10 orders are used,

ranging from 2 to 20. (B) the difference of pairs of histograms of adjacent

orders, that is, 1 with 2, 2 with 3, 19 with 20 are shown using the L2 distance.

The L2 distance of two histograms is the average difference of frequencies at

each bin.

Figure 4
Distances based on the electrostatic potentials of globin proteins. (A) the pair of

globin proteins with the largest CC of the electrostatic potentials. Monomeric

hemoglobin of Paramphistomum epiclitum (1h97A) and Glycera dibranchiata

(1hbg). Positive and negative electrostatic potentials on the protein surface are

represented in blue and red, respectively. The RMSD (Å) of the main-chain

conformation; the sequence identity(%) (SeqId); and the CC of the surface

electrostatic potentials by 3DZD of the two proteins are shown. The 3DZD

invariants of the electrostatic potentials and the hydrophobicity of the two

proteins are shown in the middle and the bottom panel, respectively. (B) four

globin proteins of diverged evolutionary distance, leghemoglobin from Lupinus

luteus (1gdi), human brain neuroglobin (1oj6A), myoglobin from yellowfin tuna

(1myt), and group II truncated hemoglobin from Bacillus subtilis (1ux8A) are

shown with the mutual RMSD, seqId, and the 3DZD CC of the electrostatic

potentials.
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has a larger region with negative electrostatic potentials

(colored in red), which is represented by the larger

3DZD CC distance to 1aoeA and 1cz3A. This character-

istic surface electrostatics of 1dyjA is not obvious by

sequence or structure similarity, as the largest sequence

identity is observed between 1dyjA and 1aoeA and the

smallest RMSD is observed between 1dyjA and 1cz3A.

The CL2 and HL2 again fail to provide meaningful values.

Figure 5(B) shows that the 3DZD of the surface elec-

trostatic potentials clearly discriminates a mesophilic

homolog of the GDH family (1hrdA) from the other five

thermophilic proteins. All these six proteins exhibit sig-

nificant sequence similarity ranging from 87% to 33%.

Despite the high sequence similarity, 1hrdA has a dis-

tinct surface electrostatics compared with the thermo-

philic proteins with the average CC of 0.714. The ther-

mophlic proteins are very similar in terms of the surface

electrostatic potentials, having an average CC of 0.108.

The classification of thermophilic and mesophilic homo-

logs of the TBP family is shown in Figure 5(C). The

three mesophilic proteins, 1ytbA, 1cdwA, and 1vokA are

well clustered with significantly small CC distance. The

sequence identity for the two thermophilic proteins

1mp9A and 1pczA is 44.8% while that for 1mp9A and

1ytbA (mesophilic) is 45.0%. One can see that sequence

identity alone is unable to distinguish between the two

types. Similarly, clustering using HL2 for GDH [Fig.

6(A)] and TBP [Fig. 6(B)] does not show clear separa-

tion between the thermophilic and mesophilic proteins.

Figure 6(A) indicates that some thermophilic protein

pairs (e.g., 1euzA and 1v9lA) are as distant to each other

as against 1hrdA. Figure 6(B) shows that the two ther-

mophilic proteins, 1mp9A and 1pczA are very distinct;

indeed more distant than between 1mp9A and 1vokA.

3DZD on the other hand provides a clear delineation of

the protein families.

Local active sites of TIM barrel proteins

The TIM b/a barrel are one of the most prevalent

folds adopted by a variety of enzymes.21 Active sites of

TIM barrel enzymes, which are usually located at the

cleft with cluster of loops of the barrel, show wide rang-

ing behavior in terms of electrostatics. This is also

reflected in the nature of binding of the ligands.40–42

As a demonstration that 3DZD can effectively compare

local surface electrostatics, we classified ligand binding sites

of 19 TIM barrel fold enzymes21 of different families.

Figure 7 shows the 19 active sites clustered into three

groups, two of which have negative electrostatic potentials

while the other has a dominant positive potential.

Figure 5
Comparison of surface electrostatic potentials of thermophilic and mesophilic

proteins. (A) RMSD, SeqId, modified similarity index based distances (MSID:

HL2/CL2), and 3DZD distances (3DZD: CC/EUC) of the surface electrostatic

potentials of three DIR family proteins. 1cz3A from a thermophilic organism,

Thermotoga maritima; 1aoeA and 1dyjA from mesophilic organisms, Candida

albicans and Escherichia coli, respectively. (B) 3DZD CC distances of the surface

electrostatic potentials of proteins GDH family. 1hrdA is a mesophilic protein

from Clostridium symbiosum, and the rest are thermophilic proteins: 1b26A

(Thermotoga maritima), 1v9lA (Pyrobaculum islandicum), 1bvuA

(Thermococcus litoralis), 1euzA (Thermococcus profundus), and 1gtmA

(Pyrococcus furiosus). Completely linkage clustering is used. The distance is

indicated in red on branches. (C) Proteins of TBP family: two thermophilic

proteins, 1mp9A (Sulfolobus acidocaldarius) and 1pczA (Pyrococcus woesei)

with three mesophilic proteins, 1ytbA (Saccharomyces cerevisiae), 1cdwA

(human), and 1vokA (Arabidopsis thaliana).

Figure 6
Complete linkage clustering of surface electrostatic potentials of GDHs and TBPs

using HL2 measure. The HL2 distance is shown on branches. (A) GDH family;

(B) TBP family.
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All of the bound ligands in group 3 have one or more

phosphate groups, which complements binding sites

with positive electrostatic potentials. In contrast,

enzymes in the groups 1 and 2 bind ligands with posi-

tively charged groups (e.g., amino pteridine and purine)

or metal ions (e.g., Mg21, Mn21, and Zn21) in the

binding pockets. Despite groups 1 and 2 having negative

potentials, strong peaks in the first few invariants of the

group 1 differentiate it from group 2. These peaks corre-

spond to common sphere-like pockets among binding

sites in the group 1. The group 1 clustering is again con-

sistent with the surface shape based 3DZD of the 19

binding sites.

CONCLUSIONS

We have introduced 3DZD for fast quantitative com-

parison of physicochemical properties defined on protein

surfaces. Using 3DZD, similarities based on properties

such as the electrostatics and hydrophobicity can be

quantified in a way that matches our intuition. 3DZD

performs better than CL2 and HL2 in its ability to pro-

Figure 7
Binding site electrostatic potential of 19 TIM barrel structures: The tree structure shows complete linkage clustering using 3DZD CC of electrostatic potentials on the

ligand binding interface. Ligand binding site is computed as a surface region within 3.5 Å of the binding ligand. Two clusters are formed using a CC threshold of 1.22:

Set1 1 Set2 and Set3. Three clusters are formed using a CC threshold of 0.61: Set1, Set2, and Set3. The three plots on the right show 3DZD invariants for each of the

sets.
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vide meaningful distances with minimum computational

effort. 3DZDs can compare not only global surfaces but

also local regions, e.g., binding sites of proteins, even in

the absence of sequence or the tertiary structure similar-

ity. Application of 3DZD can be further extended for

comparison of the other properties, such as residue con-

servation. There is an urgent demand for structure-based

protein function characterization, due to the structural

genomics projects,43,44 which solve protein tertiary

structures of unknown function in an increasing pace.45

There are earlier works for structure-based function pre-

diction,46,47 but most of the algorithms are not fast

enough to realize a real-time structure search. We believe

that the method introduced here opens up a way to de-

velop new methods for quick real-time protein surface

based function assignment,48 which are similarly fast as

routinely used global and local sequence motif based

annotation.49,50
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