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Interaction Networks 
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Abstract— Proteins carry out their function in a cell through interactions with other proteins. A large scale Protein-Protein 

Interaction (PPI) network of an organism provides static yet an essential structure of interactions, which is valuable clue for 

understanding the functions of proteins and pathways. PPIs are determined primarily by experimental methods; however, 

computational PPI prediction methods can supplement or verify PPIs identified by experiment. Here we developed a novel 

scoring method for predicting PPIs from Gene Ontology (GO) annotations of proteins. Unlike existing methods that consider 

functional similarity as an indication of interaction between proteins, the new score, named the protein-protein Interaction 

Association Score (IAS), was computed from GO term associations of known interacting protein pairs in 49 organisms. IAS was 

evaluated on PPI data of six organisms and found to outperform existing GO term-based scoring methods. Moreover, 

consensus scoring methods that combine different scores further improved performance of PPI prediction.  

Index Terms— Bioinformatics, Proteins, Computational Systems Biology, Biological Interactions 

——————————      —————————— 
 

1. INTRODUCTION 
Proteins conduct various biological functions through 
interactions with other proteins. There are complexes 
of proteins where two or more proteins physically in-
teract and permanently maintain the resulting assem-
bly, which include transporters, molecular machineries 
in transcription and translation, and molecular chaper-
ones. On the other hand, proteins in signaling path-
ways interact with each other in a transient fashion 
and pass signals to downstream proteins. Because pro-
tein interactions provide crucial information about 
how functions of proteins are orchestrated in a cell, 
tremendous efforts have been paid to develop experi-
mental methods for elucidating protein-protein inter-
actions (PPIs) on a large scale.  Experimental methods 
developed include yeast two hybrid system [1], affinity 
column-coupled with mass spectrometry [2], and liq-
uid chromatography-coupled mass spectrometry [3]. 
Revealed PPIs of organisms are stored in databases 
such as IntAct [4], DIP [5], and GenoBase (for Escherich-
ia coli data) [6]. Large PPI data are not only valuable as 
reference of known interactions but also useful for 
identifying functional pathway of proteins as well as 
predicting function of proteins by applying bioinfor-
matics approaches [7-13]. Essentially conventional 
function prediction methods from PPI are based on the 
observation that interacting proteins tend to share 

common function [14, 15]. 
Experimental methods for determining PPI are 

costly both in time and in resources. Moreover, an ex-
periment usually identifies a small subset of PPI net-
work of an organism and the rest of the interactions 
remain unknown. Thus, there is a strong need for 
computational methods that predict PPIs from various 
sources. It would be also noted that these PPI predic-
tion methods can be useful as verification tools for 
PPIs detected by experiments to handle potential er-
rors in experimental results, i.e. false positives and 
false negatives of PPIs. Indeed potential errors of PPI-
detecting experiments have been long discussed, hav-
ing observed discrepancies of PPIs detected by inde-
pendently performed experiments [16-18]. Along the 
same line of de-noising of PPI networks, some compu-
tational methods perform missing PPI link prediction 
from an exisiting PPI topology [19, 20].   

Computational PPI prediction methods can be 
classified according to the source of data used, which 
include sequence-based, structure-based, expression-
based, network-toplology-based, and function-based 
features. Sequence-based methods can be further clas-
sified into two sub-categories, those which use protein 
sequence features and the other that use comparative 
genomics approaches. Examples of the former are 
methods by Shen et al. [21] and Martin et al. [22], 
which characterized a protein sequence by frequency 
of n-mer fragments in the sequence and used support 
vector machine (SVM) to predict interaction between 
protein pairs. PIPE considers common sequence frag-
ments between a query protein pair to known interact-
ing proteins [23] while PPIevo uses position specific 
scoring matrices (PSSM) [24] as sequence features in 
framework of machine learning.  Ben-Hur and Noble 
used sequence similarity defined by several different 
forms between a query protein pair to known interact-
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ing protein pairs for a kernel method [25]. Physico-
chemical features of amino acids, such as charge and 
hydrophobicity, were also used to represent a query 
protein sequence [26]. The latter sub-category of se-
quence-based methods compares many genome se-
quences and identify protein pairs that are coded in 
close neighbors in genome sequences [27], co-exist/co-
absent in genomes [28], or fused into single genes in 
some genomes [29]. Although these methods primarily 
predict functionally-related, but not physically-
interacting proteins, predicted functional relevance can 
be strong indicators for predicting protein-protein in-
teractions because proteins often carry out biological 
function through physical interaction. The STRING 
database [30] contains a pre-computed list of identified 
protein pairs of various organisms by the comparative 
genomics approaches. Pazos et al. proposed to consid-
er similarity in phylogenetic tree of proteins to predict 
their interactions [31]. 

Structure-based methods compare the tertiary 
structure of query protein pairs to structures of known 
interacting proteins (i.e. protein complex structures in 
the Protein Data Bank [32]). If the tertiary structure of 
query proteins has not been solved yet, computational 
models can be used [33, 34]. PRISM compares query 
protein structures to a database of known structural 
interface regions [35]. Wass et al. claimed that interact-
ing proteins may be identified by performing protein-
protein docking prediction and examining the distri-
bution of docking scores of decoys  [36]. 

Network-topology-based computational PPI pre-
diction methods rely on exising PPI links to predict 
missing interactions. OS et al. developed a topological 
feature-based machine learning model to predict PPI 
links in fission yeast [20]. Hulovatty et al.  used ex-
tended neighborhood of proteins in order to extract 
their topological features to perform missing link pre-
diction in PPI networks [19].  

Gene expression data are commonly used for pre-
dicting interacting proteins because interacting pro-
teins are expected to have similar expression patterns 
over different conditions. Typically, gene expression 
data is combined with other features of protein pairs, 
such as sequence features, in a machine learning 
framework [33, 37].  

The function of a protein, usually described as a 
set of Gene Ontology (GO) terms [38], also provides 
good clue for predicting protein interactions since 
there are many cases that proteins with the same or 
similar function form permanent complexes or take 
part in the same pathway and interact to carry out 
their biological function. This is reverse from afore-
mentioned protein function prediction methods that 
use PPI data. Typical PPI prediction methods from GO 
terms consider similarity of GO terms as an indication 
of interaction [39-42]. In our previous work [43], we 
developed two scores for quantifying the “functional 
coherence” of proteins by considering association of 
GO terms observed in two biological contexts, co-
occurrences in protein annotations and co-mentions in 

literature in the PubMed database. These two scores 
are called the Co-occurrence Association Score (CAS) 
and the PubMed Association Score (PAS), respectively. 
The scores were shown to be capable of detecting pro-
tein pairs that interact with each other [43]. CAS and 
PAS are not quantifying functional similarity, rather, 
associations of GO terms, as will be further explained 
in the Method section.  

In this work, we developed a new GO term-based 
score that was designed to identify interacting pro-
teins. Unlike existing methods that consider GO term 
similarity as a signature of interacting proteins, we 
specifically mined GO term pairs that are frequently 
observed in known interacting protein pairs. The GO 
term associations were mined and quantified in a simi-
lar way as the procedure used for computing CAS and 
PAS. The new score, named the protein Interaction 
Association Score (IAS), was first characterized in 
comparison with the semantic similarity score [44]. 
Then, IAS was tested on PPI data of six organisms to 
examine whether it can identify interacting proteins. 
IAS performed in general better than CAS and PAS. 
PPI prediction was further improved when IAS, PAS, 
and CAS were combined to form consensus scores.  
IAS performs well for PPI prediction by itself and will 
be a strong component scoring term when combined 
with various different types of scores in machine learn-
ing methods.  
 
 
2. MATERIALS AND METHODS 
 
2.1. Materials 
 
2.1.1. BIOGRID Database 
Protein-Protein Interaction (PPI) data including both 
physical and genetic interactions were obtained from 
BIOGRID database [43] (build 3.2.107). This version 
contains 496,635 non-redundant interactions and 
54,236 unique proteins of 49 organisms, out of which 
47,239 proteins are associated with a known functional 
annotation in terms of GO. Along with the interaction 
data, we also obtained a mapping file that associates a 
BIOGRID protein identifier to its UniProt ID. 
 
2.1.2 UniProt Database 
We downloaded ID to GO Mapping file from UniProt 
database [44] (version 2014-09), which maps the Uni-
Prot ID’s to its set of GO terms. 
 
2.1.3 GOA Database 

We obtained GO term ontology category (Biological 
Process, Molecular function, and Cellular Component) 
information from the Gene Ontology (GO) database 
(version 2015-01). 
 
2.1.4 True Positive (TP) and True Negative (TN) 
Protein-Protein Interaction data 
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We have considered six organisms (Saccharomyces cere-
visiae, Schizosaccharomyces pombe, Drosophilla Melano-
gaster, Caenorhabditis elegans, Homo sapiens, and Ara-
bidopsis thaliana) to test the performance of IAS. We 
eliminated interactions containing proteins that are 
shared between different organisms. For example, pro-
tein-protein interaction with identifiers 13519 and 
111825 was found in both Arabidopsis thaliana and Ho-
mo sapiens. Table 1 summarizes the number of interac-
tions and proteins obtained in each organism after re-
moving such shared interactions. We also considered 
only those interactions which have both the protein 
identifiers mapped to at-least one GO term annotation. 
To test each interaction type, we categorized the inter-
actions into three groups as ‘All’, ‘physical’, and ‘ge-
netic’ using the ‘Experimental System type’ infor-
mation provided in the interaction data. To compute 
Receiver Operating Characteristic (ROC) curve of in-
teracting protein pairs for each score discussed in 
Methods section, we first randomly generated same 
number of true negative interactions as the number of 
true positive interactions for each organism. Next, we 
ranked the interactions in the decreasing order of their 
corresponding scores to calculate the sensitivity and 
specificity from the number of True Positives (TP) and 
True Negatives (TN) captured at different points in the 
ranked list.  The Area under the curve for these ROCs 
are later discussed in the first half of Section 3.2 and in 
Table 3. 
 
2.2 Methods 
 
2.2.1 Identifier mapping and retrieval of GO term 
associations 
To retrieve GO term associations, we first mapped 
each protein interactor from the interaction data to its 
UniProt IDs and then to its corresponding GO term 
annotations. During the mapping stage we used only 
unique GO terms for each protein. Then for each of the 
49 organisms’ unique interactions, we retrieved all true 
positive GO term pairs by associating all GO terms 
from one interactor with the entire set of GO terms 
annotating the other interactor in the participating 
pair. Number of associations for each GO term pair 
was computed from the total GO term pair associa-
tions obtained from all the interactions. 
 
2.2.2 GO term Interaction Association Score 
(GO_IAS) 
The GO term Interaction Association Score (GO_IAS) 
captures the relationship between two GO terms by 
normalizing the GO term pair co-occurrence count 
with the total number of protein-protein interactions 
and also with the number of times each of the partici-
pating GO term is used for protein annotation in the 
interaction data. Once we obtained the number of GO 
term pair counts and the number of individual GO 
term counts as mentioned in 2.2.1, the GO_IAS for each 
GO term pair was computed as follows: 
 

𝐺𝑂_𝐼𝐴𝑆(𝐺𝑂𝑥, 𝐺𝑂𝑦) =

𝑁(𝐺𝑂𝑥, 𝐺𝑂𝑦)
#𝑇. 𝐸𝑑𝑔𝑒𝑠

(
𝑁(𝐺𝑂𝑥)

#𝑇. 𝑁𝑜𝑑𝑒𝑠
) (

𝑁(𝐺𝑂𝑦)
#𝑇. 𝑁𝑜𝑑𝑒𝑠

)
        (1)  

 
where N(GOx-GOy) is the number of times GO term 
pair GOx and GOy interact in the PPI network, 
#T.Edges is the total number of true positive protein-
protein interactions, N(GOx) and N(GOy) are the num-
ber of times GO term GOx and GO term GOy inde-
pendently occur in the network, and #T.Nodes is the 
total number of unique proteins in the interaction net-
work. 
 
2.2.3 Protein pair Interaction Association Score 
(PPI_IAS) 
To test the prediction of two interacting proteins Pi 
and Pj using IAS, we re-computed the GO_IAS by re-
moving the two proteins and GO terms in the two pro-
teins in the interaction data. Consequently, interactions 
between the two proteins (Pi and Pj) and surrounding 
proteins were also removed. This is to remove the pri-
or contribution of the target protein pair from IAS. The 
re-computed GO_IAS score (GO_IASr) for each GO 
term pair of a given protein pair is calculated as fol-
lows: 
 

𝐺𝑂_𝐼𝐴𝑆𝑟(𝐺𝑂𝑥, 𝐺𝑂𝑦) =

𝑁(𝐺𝑂𝑥,𝐺𝑂𝑦)−𝑛(𝐺𝑂𝑥,𝐺𝑂𝑦)

(#𝑇.𝐸𝑑𝑔𝑒𝑠−#𝑛𝐸)

(
𝑁(𝐺𝑂𝑥)−𝑛(𝐺𝑂𝑥)

#𝑇.𝑁𝑜𝑑𝑒𝑠−#𝑛𝑁
)(

𝑁(𝐺𝑂𝑦)−𝑛(𝐺𝑂𝑦)

#𝑇.𝑁𝑜𝑑𝑒𝑠−#𝑛𝑁
)
      (2) 

N(GOx, GOy), #T.Edges, N(GOx), N(GOy) and #T.Nodes 
would remain the same as mentioned in (1). n(GOx, 
GOy) is the number of times the GO term pair GOx 
and GOy occur in the interactions containing protein Pi 
and Pj either interacting with each other or with other 
proteins. #nE is the total number of protein-protein 
interactions containing the proteins Pi and Pj. n(GOx)  
and n(GOy) are the  number of times one or both of the 
proteins in the respective participating pairs carry the 
same GO term. #nN is the number of proteins in the 
participating pair which is always 2. 

With all the GO term pair scores re-computed for a 
given protein pair, we calculated PPI_IAS that quanti-
fies how likely the two proteins interact. This computa-
tion is based on a matrix of GO term pair scores, where 
row values consist of GO_IASr scores of each GOterm 
of protein Pi with every GO term of the protein Pj and 
the maximum score per row is captured to compute 
the final protein pair score. Similarly, the column val-
ues consist of the GO_IASr scores of each GO term of 
protein Pj with every GO term of protein Pi. The max-
imum score of each column are then captured for the 
final score computation. Following that, the PPI_IAS 
score is defined as: 

𝑃𝑃𝐼_𝐼𝐴𝑆(𝑃𝑖, 𝑃𝑗) = max {𝑅𝑜𝑤_𝑆𝑐𝑜𝑟𝑒, 𝐶𝑜𝑙𝑢𝑚𝑛_𝑆𝑐𝑜𝑟𝑒} , (3) 

where 

𝑅𝑜𝑤_𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
∑ max1≤𝑗≤𝑀 𝐺𝑂_𝐼𝐴𝑆𝑟𝑖𝑗

𝑁
𝑖=1        (4) 
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and 𝐶𝑜𝑙𝑢𝑚𝑛_𝑆𝑐𝑜𝑟𝑒 =
1

𝑀
∑ max1≤𝑖≤𝑁 𝐺𝑂_𝐼𝐴𝑆𝑟𝑖𝑗

𝑀
𝑗=1        (5) 

Here, N is number of GO terms annotated to the pro-
tein Pi and M is the number of GO terms annotated to 
the protein Pj for a given protein pair. GO_IASrij is the 
re-computed GO term pair IAS for each associating 
GO term pair of Pi and Pj.   

Using this method, we calculated the Protein IAS 
scores for both true positive and true negative interac-
tions in each organism. 
 
2.2.4 Co-occurrence Association Score (CAS) 
and PubMed Association Score (PAS) 
PPI prediction performance by IAS was compared 
with the Co-occurrence Association Score (CAS) and 
PubMed Association Score (PAS) for GO term pairs 
previously designed by our group [41]. The protein 
pair Co-occurrence Association Score (PPI_CAS) and 
protein pair PubMed Association Score (PP_PAS) were 
computed in a similar way as how PPI_IAS was com-
puted in 2.2.3, except that the GO term scores are not 
re-computed as the two scores are not directly de-
pendent on the interaction data for their GO score 
computations. 

CAS was designed to quantify the frequency of co-
occurrences of two GO terms in a single gene annota-
tion relative to random chance [41] and is computed as 
follows: 

𝐶𝐴𝑆(𝑖, 𝑗) =

𝐶(𝑖, 𝑗)
∑ 𝐶(𝑖, 𝑗)𝑖,𝑗

(
𝐶(𝑖)

∑ 𝐶(𝑘)𝑘
) (

𝐶(𝑗)
∑ 𝐶(𝑘)𝑘

)
                                        (6) 

where C(i,j) is the number of sequences in the database 
that contain both the GO terms i and j.  Similarly, C(i) 
is the total number of sequences annotated with the 
GO term i, and so is the C(j). CAS also includes GO 
hierarchy information in scoring the term pairs. 

On the other hand, PAS is based on the number of 
times a given GO term pair occurs in the PubMed Ab-
stracts of National Center for Biotechnology infor-
mation (NCBI) [41]. PAS was computed in the same 
way as CAS. 
 

𝑃𝐴𝑆(𝑖, 𝑗) =

𝑃𝑢𝑏(𝑖, 𝑗)
∑ 𝑃𝑢𝑏(𝑖, 𝑗)𝑖𝑗

(
𝑃𝑢𝑏(𝑖)

∑ 𝑃𝑢𝑏(𝑘)𝑘
)(

𝑃𝑢𝑏(𝑗)
∑ 𝑃𝑢𝑏(𝑘)𝑘

)
                               (7) 

Here, Pub(i,j) is the PubMed abstracts count which 
contain both the GO terms i and j. Similarly, Pub(i) is 
the number of abstracts that contain GO term i and  the 
same is applicable for Pub(j). 

Using these pre-computed GO term scores, we cal-
culated protein pair CAS and PAS scores to compute 
ROC curves for comparison with IAS and other de-
rived scores mentioned in the following sections. 
 
2.2.5 Average Z-Score (Avg_Zscore) of a protein 
pair 

Along with protein CAS and PAS scores, we also com-
puted two consensus scores: Average Z-score 
(Avg_Zscore) and Average Rank Score (Avg_Rank) by 
combining all the three scores (PPI_IAS, PPI_CAS, and 
PPI_PAS) for a give protein pair. We used these scores 
to test if these combination scores performed better 
than individual scores, i.e. IAS, CAS, and PAS. To 
compute Avg_Zscore for a particular protein pair, we 
first computed the row score (IAS, PAS, or CAS) of the 
all protein pairs of the organism and computed the Z-
score of the protein pair using the distribution. The Z-
score of IAS of protein Pi and Pj is defined as follows: 
 
   𝐼𝐴𝑆_𝑍𝑠𝑐𝑜𝑟𝑒(𝑃𝑖, 𝑃𝑗)

=
(𝑃𝑃𝐼_𝐼𝐴𝑆(𝑃𝑖, 𝑃𝑗) − 𝜇𝐼𝐴𝑆  )

(𝜎𝐼𝐴𝑆)
                (8) 

Here, PPI_IAS(Pi, Pj) was computed following Equa-
tion 3. IAS is the mean and IAS is the standard devi-
ation of IAS of protein pairs of the organism. 
  

𝑃𝐴𝑆_𝑍𝑠𝑐𝑜𝑟𝑒(𝑃𝑖, 𝑃𝑗)

=
(𝑃𝑃𝐼_𝑃𝐴𝑆(𝑃𝑖, 𝑃𝑗) − 𝜇𝑃𝐴𝑆 )

(𝜎𝑃𝐴𝑆)
                 (9) 

PPI_PAS(Pi, Pj) is based on Equation 3 except for PAS 
is used instead of IASr. PAS is the mean and PAS is 
the standard deviation of PAS of protein pairs of the 
organism. 
 

𝐶𝐴𝑆_𝑍𝑠𝑐𝑜𝑟𝑒(𝑃𝑖, 𝑃𝑗)

=
(𝑃𝑃𝐼_𝐶𝐴𝑆(𝑃𝑖, 𝑃𝑗) − 𝜇𝐶𝐴𝑆 )

(𝜎𝐶𝐴𝑆)
               (10) 

Similarly, PPI_CAS(Pi, Pj) is based on Equation 3 ex-
cept for CAS is used instead of IASr. CAS is the mean 
and CAS is the standard deviation of CAS of protein 
pairs of the organism. 
 

After the IAS_Zscore, CAS_Zscore, and 
PAS_Zscore are calculated for a given protein pair, we 
average the three scores to obtain the Avg_Zscore as 
shown: 
 

𝐴𝑣𝑔_𝑍𝑠𝑐𝑜𝑟𝑒(𝑃𝑖, 𝑃𝑗) =
1

3
(

(𝐼𝐴𝑆_𝑍𝑠𝑐𝑜𝑟𝑒(𝑃𝑖, 𝑃𝑗))

+(𝐶𝐴𝑆_𝑍𝑠𝑐𝑜𝑟𝑒(𝑃𝑖, 𝑃𝑗))

+(𝑃𝐴𝑆_𝑍𝑠𝑐𝑜𝑟𝑒(𝑃𝑖, 𝑃𝑗))

)  (11) 

2.2.6 Average Rank Score (Avg_Rank) of a pro-
tein pair 
The Average Rank score was also computed for each 
protein pair by using all the three scores (PPI_IAS, 
PPI_PAS, and PPI_CAS). This time all the protein pairs 
in the organism were ranked in the descending order 
of their scores in the PPI data of the organism. Protein 
pairs with the same score carry the same rank. The 
average rank score was computed as follows: 
 



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TCBB.2015.2476809, IEEE/ACM Transactions on Computational Biology and Bioinformatics

YERNENI ET AL.:  IAS: INTERACTION SPECIFIC GO TERM ASSOCIATIONS FOR PREDICTING PROTEIN-PROTEIN INTERACTION NETWORKS 5 

 

𝐴𝑣𝑔_𝑅𝑎𝑛𝑘(𝑃𝑖, 𝑃𝑗) =
1

3
(

𝐼𝐴𝑆_𝑅𝑎𝑛𝑘(𝑃𝑖, 𝑃𝑗)

+𝑃𝐴𝑆_𝑅𝑎𝑛𝑘(𝑃𝑖, 𝑃𝑗)
+𝐶𝐴𝑆_𝑅𝑎𝑛𝑘(𝑃𝑖, 𝑃𝑗)

)           (12) 

Here, IAS_Rank(Pi, Pj) is the rank of PPI_IAS for the 
protein pair Pi and Pj in the organism. Similarly, 
PAS_Rank(Pi, Pj) and CAS_Rank(Pi, Pj) are the ranks of 
PPI_PAS and PPI_CAS for the protein pair (Pi, Pj) in 
the organism, respectively.  
 
2.2.7 Semantic Similarity (SS) Score 
Later in the results, we characterized IAS at the GO 
term level and compared IAS of GO term pairs 
(GO_IAS) with a similar existing score designed by 
Schlicker et al. [42]. This score called the semantic simi-
larity (SS) score measures the similarity of two GO 
terms, c1 and c2, by using the commonality infor-
mation in terms of common ancestors of the two GO 
terms in a given GO term pair. It is computed as fol-
lows: 
 

𝑠𝑖𝑚(𝑐1, 𝑐2) = max
𝑐∈𝑆(𝑐1,𝑐2)

(
2 log(𝑝(𝑐))

log𝑝(𝑐1) + log𝑝(𝑐2)
∗ (1 − 𝑝(𝑐))     (13) 

where S(c1,c2) is the set of common ancestors of GO 
terms c1 and c2, GO term c is one of the ancestral term 
of GO terms c1 and c2, and p(c) is the frequency of oc-
currences of GO term c in the GOA annotation data-
base. 
 
2.2.8 Evaluation of PPI Prediction 
For testing each of IAS, CAS, and PAS, we generated 
test data by combining TP and TN interactions for each 
organism and ordering them in the descending order 
of their scores, to compute the True Positive Rate (TPR) 
and False Negative Rate (FNR) for ROC curve. 
 

TABLE 1 

STATISTICS OF INTERACTIONS  

 

Organism 
Interac-
tion Type 

Number of 
Interac-
tions 

Num-
ber of 
Pro-
teins 

Saccharomyces 

Cerevisiae 

 

All 143779 5337 

Physical 49271 5030 

Genetic 94508 4887 

Schizosaccharomy-

ces Pombe 

 

All 50876 3916 

Physical 43344 2481 

Genetic 7532 3001 

Drosophila  

Melanogaster 

 

All 37130 7992 

Physical 34822 7824 

Genetic 2308 955 

Caenorhabditis All 7780 3813 

Elegans 

 
Physical 5542 3123 

Genetic 2238 1110 

Homo sapiens 

 

All 19578 7440 

Physical 19472 7414 

Genetic 106 117 

Arabidopsis  

Thaliana 

 

All 15143 6602 

Physical 15064 6596 

Genetic 79 66 

 

3. RESULTS 

3.1 Characteristics of IAS 
In this section, we characterize IAS (Eqn. 1). The GO 
database used in this study contains 12,835 Biological 
Process (BP), 4,443 Molecular Function (MF) and 1,783 
Cellular Component (CC) terms, resulting in a total of 
19,061 terms. Among 181,670,391 possible GO term 
pairs, 13,945,909 (7.7%) contain non-zero values of IAS. 

Fig. 1 shows the distribution of IAS. The maxi-
mum, median, and minimum scores are 11845.9, 19.48, 
and 0.0052, respectively. One example among the 307 
GO term pairs that have the highest IAS in the distri-
bution is GO:0035718 macrophage migration inhibitory 
factor binding and GO:0019883 antigen processing and 
presentation of endogenous antigen. The first term is in 
MF and the second in BP. A protein annotated with 
both of these terms is HG2A_Human (UniProt ID 
P04233), which plays a critical role in antigen pro-
cessing and serves as a cell surface receptor for cyto-
kine, a macrophage migration inhibitory factor.  

 
Fig. 1. Distribution of IAS for all GO term pairs. 

 
IAS can be defined not only between terms of the 

same GO category but also across different categories. 
Among 1,39,45,909 GO term pairs with non-zero IAS 
score, 67,02,934 (48.1%) pairs fall in BP, 4,45,769 (3.2%) 
in MF and 2,46,637 (1.8%) in CC. The rest of them are 
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Fig. 2. Comparison of IAS score with Semantic Similarity (SS) score A. BP domain; B. MF domain; C. CC domain.

cross-domain pairs: 3,341,961 (23.9%) are across BP-
MF, 2,435,331 (17.5%) across BP-CC, and 673,296 
(4.83%) are across MF-CC. IAS scores in the same do-
main and cross-domain show similar distribution. 

Next, in Fig. 2 we compare IAS with the semantic  
similarity (SS) score, which reflects the depth of the 
common ancestor of a GO term pair in the GO hierar-
chy and the number of gene products annotated with it 
in the database [44]. Since SS score can only capture 
GO association within the same domain, comparison is 
made separately for three different GO domains (BP, 
MF, and CC in Fig. 2A-C). Only the GO pairs that have 
non-zero IAS and SS are plotted. Overall, IAS does not 
show significant correlation with SS (with correlation 
coefficients of 0.1183, 0.1096, and 0.1691 for IAS against 
SS-BP, SS-MF, and SS-CC respectively), indicating that 
IAS captures very different information from SS. There 
are a large number of GO term pairs where both IAS 
and SS are consistently high and close to the maximum 
(e.g., GO:0015821 methionine transport and GO:0000101 
sulfur amino acid transport) or low and close to zero 
(e.g., GO:0000001 mitochondrion inheritance and 
GO:0007155 cell adhesion). On the other hand, there are 
cases where IAS is high but SS is low (e.g., GO:0003213 
cardiac right atrium morphogenesis and GO:1901201 regu-
lation of extracellular matrix assembly) and cases with the 
opposite scenario (e.g., GO:0060322 head development 
and GO:0060325 face morphogenesis). 

In Table 2 we show examples of GO pairs in the 
same domain, which have a large score either in IAS or 
in SS. The first five examples are cases of GO pairs that 
have a high IAS but a low SS score. The first example is 
GO:0019058 viral life cycle and GO:0000279 M phase, 
both in BP. These two GO terms have two common 
ancestral GO terms in the GO hierarchy, GO:0008150 
biological process (depth 0) and GO:0009987 cellular pro-
cess (depth 1). Since the lowest common ancestor of 
this pairs is too shallow (i.e. general) in the GO hierar-
chy, the SS score for this pair is as low as 0.0091. On 
the other hand, in PPI, there are 49 PPIs with these GO 
terms appearing in interacting proteins. An example of 
one of these interactions is between protein 

ILF3_Human (Q12906) and RL5_Human (P46777). 
Q21906 is involved in the M-phase of the cell cycle, a 
phase where nuclear division occurs [45]. P46777 is a 
rRNA maturation protein that is involved in viral 
mRNA translation [46].  Because of the high number of 
such PPI interactions, IAS score of this GO pair is very 
high (2398.55). 

The second example is a BP GO pair, GO:0034085 
establishment of sister chromatid cohesion and GO:0000727 
double-strand break repair via break induced replication. 
The lowest common ancestor of these two terms in the 
GO hierarchy is GO:0044699 single-organism process at 
the depth 2, hence the low SS score 0.0382. In the PPI 
network, there are 30 interactions where the interact-
ing partners hold GO:0000727 or GO:0000727. One 
such interaction is between protein CTF4_Yeast 
(Q01454) and PSF2_Yeast (P40359). The first protein, 
Q01454, functions as an accessory factor in DNA repli-
cation and has a role in duplicating the genome in vi-
vo. It has both the GO terms [47, 48]. The second pro-
tein P40359 plays an essential role in the initiation of 
DNA replication by binding to DNA replication ori-
gins [48] and has the second GO term GO:0000727 dou-
ble-strand break repair via break induced replication in the 
pair in question. Due to such PPI pairs, IAS gets a high 
value of 3290.53 for this GO pair. 

The third example is GO pair GO:0071033 nuclear 
retention of pre-mRNA at the site of transcription and 
GO:0000973 posttranscriptional tethering of RNA poly-
merase II gene DNA at nuclear periphery. Similar to the 
first example, the low SS is because they share only a 
very general term as their common ancestor 
(GO:0009987 cellular process, at the depth of 1). In PPI, 
this pair has 51 interactions where interacting proteins 
hold one or both of the GO terms. One such interaction 
is between proteins RRP6_Yeast (Q12149) and 
NUP42_Yeast (P49686). The first protein Q12149 has 
both GO terms and functions as nuclear-specific cata-
lytic component of the RNA exosome complex and 
participates in various cellular RNA processing and 
degradation events [49, 50]. The second protein 
(P49686) has the second GO term GO:0000973 posttran-

A B C
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scriptional tethering of RNA polymerase II gene DNA at 
nuclear periphery and functions as a component of the 
nuclear pore complex (NPC) that can play the role of 
docking of interaction partners for transiently associat-
ed nuclear transport factors [51]. A number of such PPI 
interactions result in a high IAS score of 3775.88 for 
this GO pair. 

The fourth example is a MF pair GO:0009884 cyto-
kine receptor activity and GO:0043424 protein histidine 
kinase binding. SS is 0.0 for this pair because these GO 
terms do not share common ancestor up to the root 
term of MF, GO:0003674 molecular function. But has a 
high IAS because the number of interacting proteins 
with the GO terms is relatively high, 25. An example is 
AHK3_ARATH (Q9C5U1) and Y5436_ARATH 
(Q8RY18). The first protein is a cytokines receptor that 
functions as a histidine kinase [52, 53]. The second pro-
tein is a meprin and TRAF-homology domain contain-
ing protein that has GO:0043424 protein histidine kinase 
binding. 

The fifth example is a CC pair GO:0034515 pro-
teasome storage granule and GO:0042175 nuclear outer 
membrane-endoplasmic reticulum membrane network. This 
GO pair has 170 PPIs. One such interaction is between 
RPN1_Yeast (P38764) and PSA7_Yeast (P21242). The 
first protein P38764 is a proteasome regulatory subunit 
and has the GO term GO:0034515 proteasome storage 
granule [54].  The second protein is a probable pro-
teasome subunit alpha type-7 and has the GO term 
GO:0042175 nuclear outer membrane-endoplasmic reticu-
lum membrane network [55].  

The next five examples in Table 2 illustrate cases 
where IAS is low while the SS score is high. The first of 
these examples is a pair of BP GO terms GO:0000819 
sister chromatid segregation and GO:0000070 mitotic sister 
chromatid segregation. Since the second term is a direct 
descendant of the first term in the GO hierarchy, the 
similarity of these two terms (the SS score) is very high 
(0.9946). On the other hand, in the PPI network, there 
is only one interaction between proteins with these 
two GO terms despite of not very small number of 
proteins with the two GO terms (10 proteins with the 

first GO term and 70 proteins with the second GO 
term), which made IAS very low (3.48). 

The rest of the four examples essentially have the 
same situation as the sixth example. Two GO terms 
listed for each example share a high functional similar-
ity because the common ancestral term is deep in the 
GO hierarchy. On the other hand, IAS is low because 
the number of interacting protein pairs with the two 
GO terms is small relative to individual proteins that 
have one of the GO terms (Eqn. 1). The seventh exam-
ple is BP pair GO:0001843 neural tube closure and 
GO:0016331 morphogenesis of embryonic epithelium. The 
SS score is high because the lowest common ancestor 
between them is the second term itself GO:0016331 
morphogenesis of embryonic epithelium at the depth of 8. 
On the other hand, IAS is low because although there 
are 127 proteins with the first GO term and 37 proteins 
with the second GO term, only two protein pairs inter-
act among them. 

The eighth example is BP pair GO:0006417 regula-
tion of translation and GO:0010608 posttranscriptional 
regulation of gene expression. The high SS core is due to 
their lowest common ancestor, GO:0010467 gene expres-
sion at the depth of six in the GO hierarchy, while in 
the PPI database, there are only two PPIs among com-
binations of 215 proteins with the first GO term and 14 
proteins with the second GO term. 

The ninth example is MF pair GO:0019829 cation-
transporting ATPase activity and GO:0042626 ATPase 
activity, coupled to transmembrane movement of substances.  
Obviously, these two GO terms are closely related. 
However, only two PPIs were observed in the data-
base, although 61 and 92 proteins are annotated with 
the first or the second GO terms, respectively.  

The final example, CC pair GO:0001669 acrosomal 
vesicle and GO:0002080 acrosomal membrane, have a 
high SS of 0.9281 due to their lowest common ancestor 
at the depth 10 (GO:0030141 secretory granule). But the 
IAS is low because of only one interacting protein pair 
among 88 proteins that have the first GO term and 22 
proteins with the second GO term. 

 
TABLE 2 

EXAMPLES OF IAS SCORES THAT ARE DIFFERENT FROM SS SCORES

GO ID 1 Description  Domain GO ID 2 Description  Domain  IAS  SS 

GO:0019058  Viral life cycle BP GO:0000279 M phase BP 2398.55 0.0091 

GO:0034085  Establishment of 

sister chromatid 

cohesion  

BP GO:0000727 Double-strand break 

repair via break in-

duced replication  

BP 3290.53 0.0382 

GO:0071033  Nuclear retention 

of pre-mRNA at 

the site of tran-

scription 

BP GO:0000973 Posttranscriptional 

tethering of RNA pol-

ymerase II gene DNA 

at nuclear periphery  

BP 3775.88 0.0091 

GO:0009884  Cytokine receptor 

activity 

MF GO:0043424 Protein histidine kinase 

binding 

MF 2350.38 0.00 
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GO:0034515  Proteasome stor-

age granule 

CC GO:0042175 Nuclear outer mem-

brane-endoplasmic 

reticulum membrane 

network 

CC 1202.98 0.0078 

GO:0000819  Sister chromatid 

segregation 

BP GO:0000070 Mitotic sister chromatid 

segregation 

BP 3.48 0.9946 

GO:0001843  Neutral tube 

closure 

BP GO:0016331 Morphogenesis of em-

bryonic epithelium 

BP 2.52 0.9237 

GO:0006417  Regulation of 

translation 

BP GO:0010608 Posttranscriptional 

regulation of gene ex-

pression 

BP 3.94 0.9716 

GO:0019829  Cation-

transporting 

ATPase activity 

MF GO:0042626 ATPase activity, cou-

pled to transmembrane 

movement of substanc-

es 

MF 2.11 0.9561 

GO:0001669  Acrosomal vesicle CC GO:0002080 Acrosomal membrane CC 3.06 0.9281 

First five are the cases where IAS is high and SS is low. Next five are cases where IAS is low and SS is high. 

To summarize these examples, differences of IAS 
and SS reflect observations that interacting proteins do 
not necessarily have similar functions (i.e. high IAS 
and low SS) and proteins with similar functions do not 
always physically interact (i.e. low IAS and high SS).  

We also compared IAS with CAS and PAS, which 
are GO term association scores that can also capture 
cross-domain associations. Fig. 3A and 3B show result 
of comparison for IAS with CAS and PAS, respective-
ly. Only GO pairs that have non-zero score for both 
IAS and CAS/PAS were used in this analysis. Among 
13,945,609 GO term pairs with non-zero IAS, 1,549,864 
(11.1%) have non-zero CAS and 1,480,407 (10.6%) have 
non-zero PAS. Overall, both CAS and PAS show mod-
erate correlation with IAS with correlation coefficient 
0.5621 for IAS-CAS and 0.4220 for IAS-PAS. An exam-
ple of a low scoring GO pair, both in IAS and CAS is 
GO:0000310 xanthine phosphoribosyltransferase activity in 
MF and GO:0032265 xanthosine monophosphate (XMP) 
salvage in BP. An example of GO pairs with a very low 
score both in IAS and CAS is GO:0000001 mitochondrion 
inheritance in BP and GO:0005773 vacuole in CC. 

 
3.2 Prediction of interacting proteins using IAS 
We tested the practical performance of IAS in predict-
ing PPIs in organisms. The benchmark dataset consists 
of 274,286 interactions between 35,100 proteins from 
six organisms as shown in Table 1. For each organism, 
the PPI_IAS score (Eqn. 3) was computed for all pairs 
of proteins and the protein pairs were sorted by the 
descendant order of their score.  Each time the PPI_IAS 
score was computed for a protein pair, the two pro-
teins and their GO annotations were removed from the 
statistics and the IAS scores were re-computed. The 
prediction performance was evaluated by the Area 
Under the Curve (AUC) of the Receiver Operator 
Characteristics (ROC). 

Table 3 summarizes the PPI prediction results 
in comparison with CAS and PAS. Obviously, all IAS,  
PAS, and CAS (more precisely, PPI_IAS, PPI_PAS, and 

Fig. 3.  Comparison of IAS score. A. IAS against CAS; 
B. IAS against PAS.  
 
PPI_CAS) performed substantially better than random 
(which has an AUC of 0.5). AUC of IAS for “All” inter-

A

B
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actions (i.e. physical and genetic) of the six organisms 
ranged from 0.6692 (D. melanogaster) to 0.7230 (S. cere-
visiae). Since both physical and genetic interactions in 
BIOGRID were used to compute IAS, both physical 
interactions and genetic interactions were predicted 
with similar accuracy by IAS. Comparing with CAS 
and PAS, overall IAS performed better than these two 
scores. Considering “all” the interactions of the six 
organisms, IAS performed better than CAS and PAS 
for four organisms while PAS was the best in the rest 
of the two organisms (H. sapiens and A. thaliana) with 
small margins to IAS. Considering three types of inter-
actions from the six organisms (thus 18 interactions), 
IAS was best for 11 interactions while PAS was best for 
the rest of the seven interactions. Figure 4 shows ROC 
curves of IAS, CAS, and PAS for “all” interactions of 
four organisms, S. cerevisiae, D. melanogaster, H. Sapiens, 
and A. thaliana. For the S. cerevisiae (Fig. 4A), IAS clear-
ly outperformed (AUC: 0.7230) while CAS and PAS 
performed in this order with similar AUC values 
(0.6931 and 0.6871, respectively). For D. melanogaster 

(Figure 4B), IAS performed marginally better than the 
other two scores (IAS: 0.6692, CAS: 0.6614, PAS: 
0.6610). In the last two panels (Figure 4C & D) PAS 
performed the best, although the difference of the 
three scores is not very clear on the ROC curves since 
their AUC values are similar (human: IAS: 0.7081, 
CAS: 0.7025, PAS: 0.7184; A. thaliana: IAS: 0.7190, CAS: 
0.7095, PAS: 0.7227). Note that in our previous work 
[43], we compared performance of CAS and PAS in PPI 
prediction with five other existing GO term-based 
scores, namely, Funsim, BP-Funsim [56], Chagoyen 
[57], Pandey [58, 59], and Funsim scores and showed 
that CAS and PAS outperformed those scores. The 
main difference of CAS and PAS against those five 
scores was that the four scores quantify similarity of 
GO terms while CAS and PAS quantify “coherence” of 
GO terms by counting associations, i.e. co-occurrence 
of GO terms. Here Table 3 further shows IAS, where 
GO term associations were taken from interacting pro-
teins, performs better than CAS and PAS in PPI predic-
tion. 

 

 
TABLE 3 AUC VALUES FOR DIFFERENT SCORE CATEGORIES 

 

Organism Interaction 
Type 

IAS PAS CAS Average  
Z-score 

Average 
Rank 

Saccharomyces  
cerevisiae 
 

All 0.7230 0.6872 0.6931 0.7307 0.7304 

Physical 0.7633 0.7520 0.7580 0.7754 0.7857 

Genetic 
 
 

0.6925 0.6510 0.6560 0.6994 0.6946 

Schizosaccharomyces 
pombe 
 

All 0.6882 0.5861 0.6037 0.6870 0.6447 

Physical 
 

0.8420 0.6789 0.7176 0.8459 0.7862 

Genetic 0.6474 0.5658 0.5794 0.6442 0.6121 

Drosophila melanogaster 
 

All 0.6692 0.6610 0.6614 0.6768 0.6800 

Physical 0.6451 0.6396 0.6388 0.6525 0.6541 

Genetic 0.7492 0.8049 0.7830 0.7874 0.8112 

Caenorhabditis elegans 
 

All 0.7155 0.6923 0.6715 0.7176 0.7158 

Physical 
 

0.6489 0.6623 0.6313 0.6521 0.6541 

Genetic 
 

0.8409 0.7439 0.7594 0.8310 0.8112 

Homo sapiens 
 

All 0.7081 0.7184 0.7025 0.7163 0.7397 

Physical 0.7047 0.7177 0.7031 0.7153 0.7382 

Genetic 0.6317 0.5779 0.5842 0.6106 0.5633 

 
Arabidopsis thaliana 

All 
 

0.7190 0.7227 0.7095 0.7308 0.7406 

Physical 0.7160 0.7219 0.7071 0.7273 0.7384 

Genetic 
 

0.7294 0.7951 0.7611 0.8087 0.8120 

In Table 4, we show examples of protein pairs 
where PPI_IAS exhibits contrasting results from the 
Funsim score, which is a score given to a protein pair 
by applying SS (Eqn. 13) to Eqn. 5 instead of IAS. Two 

examples each from yeast and human are selected. The 
first example is a protein pair, P50945 and P40341. 
P50945 is a component of a large protein complex of 
mitochondrial inner membrane that plays a crucial role 
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in the maintenance of inner membrane architecture. 
The second protein P40341 is a mitochondrial respira-
tory chain complex’s assembly protein that is involved 
in the degradation of non-assembled mitochondrial 
inner membrane proteins. This is an example that has a 
high IAS and a low Funsim score. The high PPI_IAS 
between the pair originates from high IAS between GO 
pairs across the two proteins. One such GO pair is a 
CC GO terms pair, GO:0061617 (MICOS complex) from 
the first protein and GO:0005743 (mitochondrial inner 
membrane) from the second protein. This GO pair has 
a high IAS of 133.44 due to 83 PPIs in BIOGRID among 
a combination of 5 proteins that have the first and 737 
proteins that have the second GO term. However, SS 
between the same pair of GO terms is low because the 
common ancestor of the two terms is GO:004446 (intra-
cellular organelle part) which is a relatively general 
GO term (depth 5). A similar scenario between the 
other GO pairs for this protein pair results in a high 
IAS and low Funsim score. 

The second one is an opposite case in yeast, which 
has a low PPI-IAS and a high Funsim (P25383 and 
Q99303). Both proteins are capsid proteins and are the 
structural components of the virus-like particle. The 
almost identical functionalities of the two proteins lead 
to the high Funsim score of 0.8115. However, even the 
GO pair across the two proteins with the highest IAS, 
GO:0000943 (retrotransposon nucleocapsid) and 
GO:0032197 (transposition, RNA-mediated), has as low 
IAS 12.86, because there are only 17 PPIs among a 
combination of 87 proteins that has the first GO term 
and 90 proteins that has the second GO term.  

The third example in Table 4 is P52333 and P42229 
from human. The first protein is a kinase that phos-
phorylates STAT protein. The second protein is STAT 
protein, which carries out a dual function: signal 
transduction and activation of transcription. Among 
over 2000 GO pairs across these two proteins, there are 
many that have very high IAS, which led to the high 
IAS between this protein pair. One such GO pair is 
GO:0004715 (non-membrane spanning protein tyrosine 
kinase activity) in MF and GO:0060397 (JAK-STAT 
cascade involved in growth hormone signaling path-
way) in BP, which has IAS of 213, which reflects the 
fact that there are 102 PPIs in BIOGRID among a com-
bination of 109 proteins that have the first GO term 
and 26 proteins with the second GO term. However, 
the semantic similarity score between these two GO 
terms is 0, since they are from different categories. Due 
to many such GO-pairs, this protein pair has a high 
IAS sand a low Funsim score.  

The last example is the Q96SU4 and Q9BXB4 from 
human. Both are oxysterol-binding protein (OSBP)-
related proteins, hence the pair has a large Funsim 
score of 0.9912. However, even the GO pair across the-
se two proteins that have the highest IAS is BP terms 
GO:0006869 (lipid transport) and GO:0010890 (positive 
regulation of sequestering of triglyceride), has a small 
IAS of 10.84, because there are only one PPI among a 
combination of 78 proteins with the first GO term and 
7 proteins with the second GO term. The low IAS 
among such GO pairs results in the low PPI_IAS for 
this protein pair.  Similar examples from all six species 
can be found at Supplemental Material. 

 
TABLE 4 Comparison of Protein-pair IAS and Funsim Scores  

 

Organism Protein1 Function Protein2 Function IAS score Funsim 
score 

Saccharomyces  
cerevisiae 
 
 
 
 
Saccharomyces  
cerevisiae 
 

P50945 MICOS com-
plex subunit  

P40341 Mitochondrial 
respiratory 
chain complex 
assembly pro-
tein 

3653.25 0.2048 

 
P25383 

 
Transposon 
Ty2-C Gag 
polyprotein 

 
Q99303 

 
Transposon 
Ty2-DR3 Gag 
polyprotein 

 
9.9688 

 
0.8115 

Homo sapiens 
 
 
 
Homo sapiens 
 
 

P52333 
 
 
 
Q96SU4 

Tyrosine-
protein kinase 
JAK3 
 
Oxysterol-
binding pro-
tein-related 
protein 9 

P42229 
 
 
 
Q9BXB4 

STAT 5A 
 
 
 
Oxysterol-
binding pro-
tein-related 
protein 11 

583.2310 
 
 
 
12.9753 

0.2741 
 
 
 
0.9912 
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Fig. 4. ROC curves of IAS, PAS, and CAS. A, S. cere-
visiae; B, D. melanogaster; C, H. Sapiens; D, A. thaliana. 

3.3. Consensus methods 

Next, we designed two consensus methods that com-
bine IAS, CAS, and PAS. The first method, named the  
Average Z-score method (Eqn. 11), computes the aver-
age of Z-scores of the three scores, IAS, CAS, and PAS, 
for each protein pair. The second method, the average 
rank score (Eqn. 12), computes the average rank by the 
three scores for each protein pair. Table 3 shows that 
both methods outperformed the individual scores, IAS, 
CAS, and PAS. The average Z-score method showed a 
higher AUC value than all of the three individual 
scores for 14 interactions out of 18 interactions. On the 
other hand, the average rank score was better than the 
individual scores for 16 interactions. Finally, a head-to-
head comparison between the average Z-score method 
and the average rank score shows that the average 
rank score had a higher AUC value for 10 interactions 
out of 18. It is noteworthy that the two consensus 
methods overall outperform all individual methods as 
often consensus methods just show performance that is 
near the average of component methods. 
 
 

4. DISCUSSION 

PPIs and protein function are intertwined; interacting 
proteins tend to share common functions and con-
versely, functionally related proteins are more likely to 
interact with each other. Thus, from a bioinformatics 
point of view, PPI network can be a source of protein 
function prediction while functional relationship of 
proteins can be used for verifying experimentally de-
tected PPIs. The same relationship to protein function 
is also observed between other omics data, including 
gene expression patterns and phylogenetic profiles. 

In this work, we developed IAS, a novel GO term-
based score for predicting PPIs. To make IAS specific 
for PPI prediction, we mined GO term pair associa-
tions directly from interacting protein pairs. Conse-
quently, IAS captured new relationships of GO terms, 
which is very different from conventional functional 
similarity. Moreover, unlike functional similarity of 
GO terms, such as the SS score, IAS can be defined also 
for GO term pairs that are from different categories. 
The method of computing IAS, i.e. counting observed 
GO pairs followed by normalization with an expected 
number of such counts, is essentially the same as statis-
tical atom-atom or residue-residue contact potentials 
[60, 61], which are very successful in the protein struc-
ture prediction field. This simple yet powerful ap-
proach could also be applied to prediction of other 
behaviors of proteins and genes, such as co-expression 
of genes from GO term annotations. 
 

5. CONCLUSIONS 
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We have developed a novel score of GO terms named 
IAS for predicting interacting proteins. Unlike existing 
works which consider functional similarity to predict 
PPI, IAS quantifies associations of GO terms that are 
frequently observed in known interacting proteins. IAS 
performed better in predicting PPIs than existing GO 
term-based scores. Moreover, consensus methods fur-
ther improved the accuracy of PPI prediction.  

6. ADDITIONAL FILES 

IAS scores of GO term pairs are made available at 
http://kiharalab.org/IAS/. Moreover, 60 examples in 
accordance with Table 4 are provided as Supplemental 
Material. IAS score of proteins can be computed at 
http://kiharalab.org/compare.php.  
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