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ABSTRACT This article describes the PROSPEC-
TOR_3 threading algorithm, which combines various
scoring functions designed to match structurally re-
lated target/template pairs. Each variant described
was found to have a Z-score above which most identi-
fied templates have good structural (threading) align-
ments, Zstruct (Zgood). ‘Easy’ targets with accurate
threading alignments are identified as single tem-
plates with Z > Zgood or two templates, each with Z >
Zstruct, having a good consensus structure in mutually
aligned regions. ‘Medium’ targets have a pair of tem-
plates lacking a consensus structure, or a single tem-
plate for which Zstruct < Z < Zgood. PROSPECTOR_3
was applied to a comprehensive Protein Data Bank
(PDB) benchmark composed of 1491 single domain
proteins, 41–200 residues long and no more than 30%
identical to any threading template. Of the proteins,
878 were found to be easy targets, with 761 having a
root mean square deviation (RMSD) from native of
less than 6.5 Å. The average contact prediction accu-
racy was 46%, and on average 17.6 residue continuous
fragments were predicted with RMSD values of 2.0 Å.
There were 606 medium targets identified, 87% (31%)
of which had good structural (threading) alignments.
On average, 9.1 residue, continuous fragments with
RMSD of 2.5 Å were predicted. Combining easy and
medium sets, 63% (91%) of the targets had good thread-
ing (structural) alignments compared to native; the
average target/template sequence identity was 22%.
Only nine targets lacked matched templates. More-
over, PROSPECTOR_3 consistently outperforms PSI-
BLAST. Similar results were predicted for open read-
ing frames (ORFS) <200 residues in the M. genitalium,
E. coli and S. cerevisiae genomes. Thus, progress has
been made in identification of weakly homologous/
analogous proteins, with very high alignment cover-
age, both in a comprehensive PDB benchmark as well
as in genomes. Proteins 2004;56:502–518.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

A key goal in this postgenomic era is to assign the
function of genes and gene products in all genomes.1–5

Here, the corresponding three-dimensional native struc-

tures of the associated proteins can play an important role
via the sequence-to-structure-to-function paradigm.2,6–11

This idea, along with the goal of delineating all possible
protein folds, has provided the impetus for structural
genomics.2,9–12 To make this process as efficient as pos-
sible, it is important to establish whether the target
protein adopts an already known fold or if it is likely to
adopt a novel fold. In this respect, the development of
approaches that not only recognize homologous proteins
(viz. comparative modeling) but also analogous proteins
(proteins that adopt the same topology but at the very least
are evolutionarily distant ) are very important.13 One
might expect that such analogous predicted structures
would be of substantially lower resolution than those
obtained from comparative modeling.14–16 It is important
to ask whether such low-resolution structures have any
predictive value. Over the last few years, we have demon-
strated that, even if the resulting predicted structures are
of low resolution with a backbone root mean square
deviation (RMSD) from native of 4–6 Å, they can often be
used to predict the biochemical function of the protein of
interest if the protein is an enzyme.6,13,17,18 Furthermore,
if there is a known ligand, these low-resolution structures
can be used to identify the ligand-binding site in about
two-thirds of the cases.19 Thus, it is important to develop
methods that extend threading to treat proteins of low
sequence identity to the template. Motivated by this goal,
in this paper we describe our threading algorithm, PROS-
PECTOR_3, which extends the applicability and reliabil-
ity of these methods and provides templates (where appro-
priate), as well as predicting contacts for use in subsequent
fold assembly/refinement.

At present, there are two basic approaches to assess
whether a new protein sequence, the target, matches a
known fold, the template. Sequence-based approaches are
designed to establish an evolutionary relationship be-
tween the target and template proteins.4,14,20–25 Because
protein structure is better conserved than protein func-
tion, if an evolutionary relationship exists between two
proteins, then it is possible can exploit this fact to assign
the structure of the target sequence.26,27 Over the last few
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years, sequence-based methods have used not just single
sequences but multiple sequence alignments to define
sequence families.28 These approaches construct a se-
quence profile by pooling sequences identified on succes-
sive iterations, as in PSIBLAST.20 More recent approaches
employ sequence profile–profile comparisons that compare
the sequence conservation patterns of the target and
template sequences.29 Another powerful class of algo-
rithms is the Hidden Markov Models (HMMs).24,25,28,30,31

For example, Pfam HMMs are optimized to recognize
family members with a small false positive rate, but they
my miss more distantly related sequences.23,24,32 SAM
T-99 represents another powerful class of HMMs.25

Threading algorithms also attempt to identify related
template structures, but unlike sequence-only approaches,
they can also include structure-based information, such as
secondary structure, burial patterns, and/or side chain
pair (or higher order) interactions.33–37 The goal of thread-
ing is to identify proteins that adopt similar structures,
whether they are evolutionarily related or not; in its
purest form, no evolutionary information is used in the
comparison.38–41 Threading should be able recognize not
only homologous proteins but also analogous folds.13 CASP5
found a number of convincing cases in which threading has
begun to demonstrate its ability to recognize such analo-
gous folds.13 Finally, after over a decade of development,
there are a number of threading approaches that signifi-
cantly outperform sequence-only approaches. These in-
clude the PROSPECT algorithm of Xu and coworkers,35

the GENTHREADER algorithm of Jones and cowork-
ers36,42 and PROSPECTOR.13 CASP5 also demonstrated
the power of metaservers that combine consensus informa-
tion from a variety of threading and sequence based
servers to make more accurate structural predictions.43,44

While metaservers perform almost as well as the best
human predictors, their success rests on the success of the
individual input servers. Thus, there is a significant
impetus to improve the individual fold recognition algo-
rithms. In this spirit, we describe the benchmarking and
application of a more recent version of our threading
algorithm, PROSPECTOR_3, an earlier version of which
was a key factor in our performance in CASP5.13

A key issue for the success of any threading algorithm is
the completeness of the library of solved structures in the
protein data bank (PDB).45 If a related structure of a
target sequence is not already solved, then fold recognition
algorithms will not work. Recently, we demonstrated that
at the level of low to moderate resolution protein struc-
tures, the PDB is essentially complete for single domain
proteins.46 For example, low to moderate resolution pro-
teins of 100 residues or fewer have significant coverage,
even by proteins from a different secondary structure class
(by far the worst case scenario), with an average backbone
C� RMSD from native of 3.8 Å that covers 86% of the
target protein. Furthermore, protein structure space is
very dense. For larger proteins, non-related proteins cover
a significant portion of their structure, with different top
hit proteins aligned to different regions; the top ten hit
proteins can give 90% coverage for proteins up to 320

residues in length. Thus, in principle, a perfect threading
algorithm should be able to assign most, if not all, single
domain proteins to a template. At worst, it might identify
the correct fold, but with alignment errors; at best, it
should be able to provide significant models for use in
subsequent refinement.

An outline of this article is as follows. In the Material
and Methods section, we present the improved PROSPEC-
TOR_3 threading algorithm, which includes a cascade of
various scoring functions. Then, in the Results section, we
describe our algorithm’s ability to successfully identify
analogous/weakly homologous templates in a representa-
tive set of PDB structures composed of single domain
proteins 200 residues or smaller that are no more than
30% identical to proteins in the threading structural
template library; on average, the sequence identity of the
target sequence to the assigned templates was 22%. We
present an analysis of fold assignments, the percent of
residues assigned to structures and the ability to identify
reliable alignments. We then summarize a comparison of
PROSPECTOR_3 to PSIBLAST.20–22 Then, the applica-
tion of PROSPECTOR_3 to the set of ORFS 200 residues or
smaller in the M. genitalium,47 E. coli48 and S. cerevisiae1

genomes is reported. In the Conclusions section, we high-
light the important results and suggest directions for
future research.

MATERIALS AND METHODS

As described above, we recently demonstrated that the
PDB is complete at the level of low resolution of single
domain protein structures (even if only nonhomologous
proteins are considered).46 Thus, a good threading algo-
rithm should be able to detect these analogous proteins –
in other words, given a set of unrelated sequences that fold
to a single domain protein, all (or more realistically almost
all) should be assigned to templates. In practice, because of
deficiencies in threading algorithms, some of these tem-
plate structures are not identified, but one might imagine
that, with a combination of different scoring functions, we
should be successful in assigning a significant number of
them; this idea provides the motivation for our current
approach to threading.

Overview of Methodology

A schematic overview of PROSPECTOR 3.0 is shown in
Figure 1. All alignments were generated using a Needle-
man–Wunsch type of global alignment algorithm.49 PROS-
PECTOR 3.0 is an iterative threading approach consisting
of close (distant) sequence profiles that, for each structure,
generate the probe-template alignment (first pass, m � 1)
to be used in the evaluation of the pair interactions in the
second through fourth (m � 2–4) passes. A total of 20
structures (the top five structures for each of the two m �
1, close and distant sequence profile scoring functions, plus
the top five structures from the two mth pass scoring
functions) were used to generate predicted contacts and
subsequent protein specific potentials50 to be used for the
m � 1st pass. At the end of the fourth pass, predicted
contacts, continuous local fragments, and, if Z exceeded
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Zstruct, predicted templates and corresponding alignments
were developed.

In order to assign a good structural template to as many
target sequences as possible, a variety of pair potentials
and scoring approaches are used,50 the idea being that
different scoring functions might be able to assign differ-
ent target sequences to templates. This is somewhat
different from the idea of metaservers that attempt to
identify consensus regions assigned by multiple algo-
rithms.43,44 In practice, there are three classes of pair
potentials employed – the Quasichemical based pair poten-
tial, indicated by Q;51 the protein specific, local sequence
fragment based, orientation independent pair potential,
indicated by H;50 and the protein specific, local sequence
fragment based, orientation dependent pair potential indi-
cated by �.50

There are two ways to evaluate the score significance of
a target in a template. In the first, we employ the ideas of
the original PROSPECTOR algorithm37 and evaluate the
score significance in terms of the Z-score of the sequence
mounted in a given structure defined, in general, by

Z � �E � �E��/sqrt��E2� � �E�2� (1)

the quantity in �� denotes the average of the best align-
ment given by dynamic programming over the template
library, and E is the score or energy. This generates 3

versions of PROSPECTOR_3 – PROSPECTOR_3Q,
PROSPECTOR_3H and PROSPECTOR_3�. We also follow
the idea of Karplus,30 and for each target template align-
ment and corresponding scoring function, the score is
evaluated as the energy difference between the best score
of the target sequence aligned to the template and the
reversed sequence aligned to the template. This is much
faster than the more traditional method of evaluating the
score relative to that of the randomized sequence. As
shown below, this improves the sensitivity of the thread-
ing algorithm. For those cases where the score is relative
to that of the reversed sequence, we identify each set of
scoring functions by ‘rev,’ thereby, generating the three
versions of PROSPECTOR_3 – PROSPECTOR_3Qrev,
PROSPECTOR_3Hrev and PROSPECTOR_3�rev. Thus, in
total, there are six different versions of PROSPECTOR_3.

In what follows, we establish the Z-score cutoff, Zstruct,
above which templates with good structural alignments
are confidently identified (above 95% of the target/
template pairs have a maximum RMSD to native of 6.5 Å
on the basis of the best structural alignment, whose
average coverage is 72%46). This turns out to be a Z-score
of 7 (5) for the rev (non rev) series. We also identify the
Z-score threshold, Zgood, above which the alignment has a
RMSD from native below 6.5 Å for the coordinate align-
ment obtained from threading, (hereafter called ‘the thread-
ing-based alignment’) in more than 81% of the cases. (On
the basis of the PDB benchmark described in the results
section, Zgood � 15 for the rev series, and Zgood � 10, 10
and 8.2 for the Q, H and � series respectively).

The Template Library

Because PROSPECTOR_3 is an iterative process, in
which consensus side chain contacts are assumed to have
predictive value and are used in subsequent threading
iterations, it is important that the template library be
sufficiently diverse. Otherwise, the results will be spuri-
ous. Our template library was constructed as follows: the
entire PDB was clustered into representative families, no
pair of which had less than 35% global sequence identity to
other members of the family, nor greater than 35% iden-
tity to members outside the family. A randomly chosen
member of this family was selected as a representative.
This protein was added to the template library if one of
these two conditions held: (1) it had no more than 35%
sequence identity over the aligned regions to any template
or (2) it had no more than 35% global sequence identity
(ratio of the number of identical residues to the number of
residues in the target sequence). As of February 2003,
there were 3575 templates in our template library. The list
may be found at http://www.bioinformatics.buffalo.edu/
threading/LIST.templates.

Generation of Sequence Profiles

Our sequence database was a combination of the
SWISSPROT (http://www.expasy.ch/sprot/)52 and the
KEGG genome sequence databases (ftp://kegg.genome.
ad.jp/genomes/genes).53 FASTA54,55 was employed to se-
lect sequences with a sequence identity to the target

Fig. 1. Flow chart of the PROSPECTOR_3	 series of threading
algorithms. Close and distant sequence profiles were independently
employed (along with predicted secondary structure in the H and �
variants) to generate target sequence alignments to a template to identify
the partners to be used in subsequent evaluation of pair interactions. Top
scoring alignments from the close, distant profiles (m � 1, first pass), and
a corresponding set of pair interactions plus secondary structure predic-
tions (m � 2) were used to generate predicted consensus contacts to be
used in the third (m � 3) and fourth (m � 4) iterations of threading. The
resulting algorithm provides: (1) consensus predicted side chain contacts,
(2) predicted continuous local fragments and (3) a predicted template, if
the Z-score of the target template match is greater than Zstruct. In more
than 90% of the cases, the predicted template has a good structural
alignment.
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sequence between 35% and 90%, as well as all sequences
with an E-value to the target sequence of less than 10. The
former comprise the ‘close’ and the latter the ‘distant’ set of
sequences whose alignment to the target sequence is
generated from CLUSTALW.56 The goal here was to have
sets of sequences that spanned the regime from closely
related proteins to distantly related sequences. (We note
that we also tried PSIBLAST20 to generate the distant
sequence set; unfortunately, unlike with FASTA, some-
times highly spurious results are generated when PSI-
BLAST converges to a completely unrelated family, while
other times the distant profiles using PSIBLAST are more
sensitive than those from FASTA. Given the instability of
the PSIBLST results, we opted to use FASTA.)

The sequence profile for the ith position in the probe
sequence for amino acid type 
 is very simple and is given
by

P��
, i� � 5 �
��1

N�

B�
, ai��/N� (2a)

where we use the shorthand notation

� � � close
distant � (2b)

Here N� is the number of sequences in the ‘close’ set or
‘distant’ set. B(
,) is the BLOSUM 6257,58 mutation
matrix for amino acid residues of type 
 and  (Other
mutation matrices were tried, but BLOSUM6257,58 worked
best) and ai� is the amino acid at position i in the lth
sequence of the set.

Secondary Structure Propensities

Next, we considered a term to evaluate the consistency
of the secondary structure prediction (helix, coil, beta) of
the target obtained from PSIPRED59 with that observed in
the template structure,

Si
���i, �tem,J� � 3��i,�tem,J (3)

with ��� the representing Kronecker delta (�1 if � � � and
0 otherwise). �i and �tem,J are the predicted target
sequence secondary structure at residue i and the actual
secondary structure of the Jth residue in the template,
respectively.

First Pass Scoring Function

The score matrix associated with aligning residue i with
the Jth residue in the Kth structure for PROSPECTOR_3Q
and PROSPECTOR_3Qrev is

SK,Q
�,1 �i, j� � P��aJK, i� (4a)

while for PROSPECTOR_3� (� � H,�) and
PROSPECTOR_3�rev, the corresponding scoring function
is:

SK,�
�,1 �i, J� � P��aJK, i� � Si

���i, �tem,J� (4b)

Pair Interactions

The next step is to use the alignment provided by the m � 1
first pass scoring profile to generate the partners in the
evaluation of the pair potentials. For PROSPECTOR_3Q
and PROSPECTOR_3Qrev, the homology-averaged, orien-
tation-independent pair potential for the second pass, m �
2, is given by

EQ
�,2�i, j� � �5 �

��1

N�

ε�ai�, aj��/N� (5a)

where EQ
�,2(i,j) is the arithmetic average over the N�

sequences of the quasichemical pair potentials symbol for
episol (8.n) which describe interactions between contact-
ing side chains of amino acid types 
, (that is, they have
at least one pair of side chain heavy atoms within 4.5 Å of
each other).51 � is defined in eq. (2b). If there is a gap in the
alignment, then the pair potential is assigned a value of
zero. The minus sign arises because we want to maximize
the score; that is, gap penalties are negative.

For PROSPECTOR_3H and PROSPECTOR_3Hrev, the
homology-averaged, orientation-independent pair poten-
tial for the second pass, m � 2, is given by

EH
�,2�i, j� � �2.5 �

��1

N�

ε�ai�, aj��/N� � 0.5εH�i, j� (5b)

Where εH(i,j) is the local sequence fragment based pair
potential derived previously.50 For PROSPECTOR_3� and
PROSPECTOR_3�rev, we employ the analogous protein
specific, side chain orientation dependent pair potential
defined by

E�
�,2�i, j, 	� � �0.5 � EH

�,2�i, j� � 0.2 � E	
��i, j, �� (5c)

where E	
�(i,j,�) is the protein specific, side chain orienta-

tion dependent pair potential derived previously.50 	 is
divided into three bins for antiparallel (�120°), parallel
(�60°), and acute orientations (between 60 and 120°) of the
pair of vectors, each from the side chain center of mass to
the C�.

For iterations m � 3 and 4, we add a potential based on
contacts predicted from the previous iteration as follows.
For a given iteration, if a contact is present in a minimum
of four of the top 20 scoring structures, each with a
minimum Z-score greater than 1.3 (5 each from the
close/distant sets from the m � 1 pass, plus 5 each from the
close/distant mth pass that includes pair interactions),
this constitutes a subset of the predicted contacts. To
further expand their number, we also examined the two
adjacent residues to i and j, and included their contacts if
they had a favorable BLOSUM 6257 (positive) mutation
matrix value. Let the resulting total number of contacts
between residues i and j be qij

m associated with iteration
m � 2, 3 or 4, then the contact-based pair potential for
these positions where there is a predicted contact for
scoring function type � � Q, H, or � is37

V�
m�i, j� � �ln�qij

m/qij
0m� (6a)
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where the expected number of contacts, qij
0 is given by

qij
0m � �

i�1

n �
j�1

n

qij
m/n2 (6b)

Here, we used the convention that

V�
1 �i, j� � 0 (6c)

Here, n is the number of residues in the target sequence.
For those pairs of positions where no consensus contacts

were found, depending on which scoring function was
used, we found different terms to be optimal. For � � Q, if
residues i and j are not in contact, then for m � 3-4,

VQ
m�i, j� � 0 (6d)

The situation is somewhat more complicated if � � H or �;
then, for m � 2,

V�
2 �i, j� � E�

near,2�i, j� (6e)

with EH
near,2(i,j) given by eq. (5b) and E�

near,2(i,j) by eq.
(5c) respectively.

While for m � 3,

VH
3 �i, j� � �EH

near,3�i, j�/5 (6f)

and

V�
3�i, j� � �E�

near,3�i, j� (6g)

where EH
near,3(i,j) is defined below in eq. (8a).

Third and Fourth Iteration Pair Potentials

For PROSPECTOR_3Q and PROSPECTOR_3Qrev, the
homology-averaged, orientation-independent pair poten-
tial for the third and fourth pass (m � 3 and 4 respectively)
is given by

EQ
�,m�i, j� � 0.5 � �EQ

�second�i, j� � VQ
m�1�i, j�� (7)

where VQ
m�1(i,j) is given by eq. (6a) or (6d) where appropri-

ate.
For PROSPECTOR_3H and PROSPECTOR_3Hrev, the

homology-averaged, orientation-independent pair poten-
tials for the third (m � 3) and fourth (m � 4) passes are
given by

EH
�,3�i, j� � 0.5 � EQ

�,2�i, j� � 0.25 � �VH
2 �i, j� � εH�i, j��

(8a)

where VH
2(i,j) is given by eq. (6a) or (6e) where appropri-

ate. Similarly,

EH
�,4�i, j� � 0.5 � EQ

�,2�i, j� � 0.25 � �VH
2 �i, j� � VH

3 �i, j��

(8b)

where VH
2(i,j) and VH

3(i,j) are defined by eq. (6a), or (6e)
and (6f) respectively, where appropriate.

For PROSPECTOR_3� and PROSPECTOR_3�rev, we
employ the analogous protein specific, side chain orienta-
tion dependent pair potential that is given by (for m � 3, 4)

E�
�,m�i, j, 	� � 0.5 � EQ

�,2�i, j� � 0.2 � E	
second�i, j, ��

� 0.4 � V�
m�1�i, j� (8c)

with V�
m�1(i,j) given by eqs. (6a), (6e), or (6g) where

appropriate.

Second–Fourth Pass Scoring Matrix

Let AK,�
�(J) be the alignment between the Jth residue in

the Kth structure and the target sequence generated by the
�th sequence profile alignment for first pass scoring func-
tion of type � [see eqs. (4a,b)]. Then, the matrix, SK

�,m(i,J)
associated with aligning the ith residue in the target
sequence with the Jth position in the Kth structure for
iteration m � 2–4 is

SK,�
�,m�i, J� � SK,�

�,1 �i, J� � �
m�1

ncK�J�

E�
�,m�i, A1K,�

� �CJK�m��� (9)

The values for E�
�,m are given by eq. (5–8c) where

appropriate. The term ncK(J) represents the number of
contacts the Jth residue makes in structure K, and CJK(m)
is the identity of the mth contact partner that residue J
makes in structure K.

Gap Penalties and End Effects

To allow for better domain identification, there were no
gap penalties before the beginning and after the end of the
aligned regions. The gap penalties for the various scoring
functions are summarized in Table I.

The Easy Set

We also established measures independent of knowl-
edge of the native state to identify which target sequences
were accurately aligned to their templates; these target
sequences were designated the ‘easy’ set. For a given
version of PROSPECTOR_3�, with Z � Zstruct, we identi-
fied target sequences with structurally similar, aligned
regions in two or more templates (local RMSD �5 Å
between identical aligned residues in the top two Z-score
templates.). These were termed ‘consensus regions,’ and
for the rev (non rev) series generated good alignments in
more than 95% of the cases. We added to this set target
sequences matched to a single template with Z � Zgood.
The resulting set of sequences, �-easy, for a given version
of PROSPECTOR_3�, provided template/alignment candi-
dates for the easy set. Since different versions of PROSPEC-

TABLE I. Summary of Gap Initiation/Propagation
Parameters

Scoring

Prospector_3Q
series

Prospector_3H/�
series

Opena Propagationa Opena Propagationa

Close profile �10 �1.2 �8.0 �1.2
Second-fourth pass �10 �0.4 �10 �1
Distant profile �8.0 �1.2 �8.0 �0.6
Second-fourth pass �10 �0.8 �8.0 �0.6
a“Open” and “Propagation” refer to the gap open and propagation
parameters, respectively.
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TOR_3� have different accuracies (see Table IIA, below),
the easy set (along with associated templates, template
alignments, contact predictions and fragment predictions)
was constructed by taking all members of the �rev-easy set,
then all members of the Hrev-easy set not included in the
�rev-easy set, then all remaining members of the �-easy set,
then all remaining members of the H-easy set, then
members of the Qrev-easy set, and finally all remaining
members of the Q-easy set. While this order was con-
structed on the basis of empirical results from the PDB
benchmark, it was subsequently applied to all cases.

The Medium Set

Those proteins having single templates with Zstruct �
Z � Zgood were designated the medium set because they
had, on average, good structural alignments to the tem-
plate but sometimes poor threading-predicted alignments.
Also included in this group were target sequences that had
at least two templates with Z-scores � Zstruct, but for
which the threading-based alignments lacked structural
consensus regions. Due to the iterative nature of the
algorithm, sometimes there is one good template and one
bad template. This can lead to ambiguous contact predic-
tions. The medium set was constructed as follows. First, all
members of the easy set were eliminated (e.g. if a target
was a member of at least one 	-easy set, then it was
assigned to the easy set, even if it was a medium target
according to other versions of PROSPECTOR_3	). The
medium set was constructed by taking all members of the
�rev-medium set, then all members of the Hrev-medium set
not included in �rev-medium, then all remaining members
of the �-medium set, then all remaining members of the
H-medium set, then additional members of the Qrev-
medium set, and finally the remaining members of the
Q-medium set.

The Hard Set

Finally, there were proteins that could not be assigned
to any template whatsoever by any of the scoring functions
of PROSPECTOR_3	; these are referred to as the hard set
in what follows.

RESULTS AND DISCUSSION
Selection of Benchmark Proteins

To assess the ability of PROSPECTOR_3	 to identify
analogous templates, we constructed a subset of the repre-
sentative template library composed of proteins between
41 and 200 residues that form compact tertiary structures
and are not coiled coils. (In the absence of the former
condition, we often correctly identified domains, but their
mutual orientation was wrong; there was also significant
misassignment of coiled coils.) We removed all proteins
from the template library that had 30% or greater se-
quence identity to the target sequence, as calculated over the
set of aligned residues. These restrictions yielded a represen-
tative set of 1491 proteins for testing. The list of these may
be found on our web site at http://www.bioinformatics.
buffalo.edu/services/threading/LIST.benchmark. Of these,
29% are �-proteins, 32% are �-proteins and 35% are
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�/�-proteins, with the remaining having little if any second-
ary structure. This set represents a total of 440 different
CATH26 numbers (counting the first 3 of 4 CATH digits).
Considering only CATH numbers starting from 1–4 re-
duces the total to 290. Among these, the �-class has 78
different topologies, the �-class has 65 different topologies,
and the �/�-class has 118 different topologies.

Comparison of Results from Various Versions of
PROSPECTOR

In Table IIA, we present a summary of the results from
the various versions of PROSPECTOR, including the
original version.37 The entries in columns 2–8 show the
number of target sequences that satisfy the criterion given
by the corresponding entry in column 1, as well as the
average RMSD that satisfies this criterion and the average
coverage (fraction of residues aligned relative to the target
protein’s length). Comparing the original version of PROS-
PECTOR,37 which mainly matches the easiest cases of
proteins to their templates (column 2), to that of
PROSPECTOR_3Q (column 3), using the same version but
with zero gap penalty at the beginning and end of the
alignment, it is clear that roughly twice the number of
good target/template matches are found with
PROSPECTOR_3Q, but at the cost of significantly smaller
alignments. If the goal is to identify good regions for as
many templates as possible, then reducing the gap penalty
on the ends is useful. If, however, one wants as many
proteins as possible with essentially comparable coverage
to the original version of PROSPCTOR, then
PROSPECTOR_3H (column 5) and PROSPECTOR_3� (col-
umn 7) are clearly superior to the original PROSPECTOR
(with PROSPECTOR_3� giving a slightly better RMSD
distribution than PROSPECTOR_H for most RMSD val-
ues below 6.5 Å), with each assigning an additional 97
targets to templates.

If further improvement is desired, then for the H and �
series of PROSPECTOR_3, the rev series clearly performs
better than the set where the score of the sequence in the
template alone is used to assess significance (compare
columns 5-6, 7-8). Comparing the Hrev and �rev series, the
�rev series performs slightly better over all RMSD ranges

and would be the one to use, if one had to choose a single
variant of PROSPECTOR_3 with the highest average
coverage and accuracy. The Q and Qrev series (columns
3-4) behave differently in the sense that the Qrev set has
higher average coverage, but fewer cases with acceptable
(low) RMSDs.

Another issue is how much the performance of PROS-
PECTOR_3 is enhanced by the inclusion of pair potentials
relative just using sequence profiles and predicted second-
ary structure. In column 9 of Table IIA, we present the
results for this situation, calculated using close and dis-
tant sequence profiles [see eq. (4b)]. Clearly, for all RMSD
thresholds, the number of assigned target proteins is
significantly smaller than when any of the pair potentials
are used. At worst, using PROSPECTOR_3H, for a RMSD
threshold of 6.5 Å, an additional 211 targets have accept-
able templates. For a RMSD threshold of 4 Å, at worst,
again using PROSPECTOR_3H, an additional 154 targets
have acceptable templates. This clearly shows that the
improvement of using pair potentials over sequence pro-
files plus secondary structure predictions is highly signifi-
cant. Furthermore, comparing these results with the full
suite of PROSPECTOR_3	 algorithms as well as with
other fold recognition algorithms (see Table VI below), use
of secondary structure without pair interactions is signifi-
cantly worse than use of the full easy set of PROSPEC-
TOR_3	, (indeed only 5 proteins would be added to the
easy set), with somewhat better performance than PROS-
PECT,35 but worse than SAM-T9928 and SPARK.60 Thus,
we conclude that it is the presence of pair interactions,
enhanced by the predicted contacts, that are responsible
for the relatively good performance of PROSPECTOR_3	.

Structural Alignment of Test Template

As shown in the last row of Table IIA, the percentage of
targets that have good RMSD values is less when the rev
type of scoring function is used, but in an absolute sense
the rev type correctly assigns more targets to templates.
Certainly no less than 70% of the targets in all cases have a
good template in the top five selected templates (ranked on
the basis of their Z-scores), but we would like to increase
this rate of success. Techniques that do this will be

TABLE IIB. Summary of Results for Top Five Templates for Easy and Medium Setsa

Summary criterion East set Hrev: distant profiled Medium set Hrev: distant profiled

Total 878/4.1/0.85 878/4.9/0.86 606/9.6/0.60 606/12.1/0.65
Structural alignments RMSD � 6.5b 846/2.8/0.83 830/2.8/0.83 502/4.3/0.56 490/505/0.58
RMSD � 2 Å 151/1.6/0.89 119/1.6/0.90 47/1.2/0.24 16/1.2/0.59
RMSD � 3 Å 401/2.1/0.89 332/2.2/0.9 77/1.7/0.28 27/1.7/0.62
RMSD � 4 Å 588/2.6/0.87 495/2.6/0.9 102/2.1/0.30 38/2.3/0.61
RMSD � 5 Å 688/2.9/0.87 599/2.9/0.89 134/2.7/0.35 56/3.0/0.65
RMSD � 6 Å 753/3.1/0.86 677/3.2/0.88 167/3.3/0.4 74/3.6/0.66
RMSD � 6.5 Å 760/3.1/0.86 698/3.3/0.87 191/3.7/0.4 89/4.0/0.65
% � 6.5 Åc 87% 81% 31% 15%
aListed in columns 2–4 are the numbers of target proteins whose best of top five Z-score templates has an RMSD below the threshold
specified in column 1, the average RMSD and the average coverage.
bThe top Z-scoring template is taken for structural comparison with the target sequence’s native structure.
cFraction of targets with assigned templates at least one of which has an RMSD below 6.5 Å.
dObtained from PROSPECTOR_3Hrev distant profile m � 1 pass top scoring templates.
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described below (namely the construction of the ‘easy’ set),
but first we address issues of how good the structural
alignment is between the target and the top Z-scoring
template. Here, we employ our recently developed struc-
tural alignment algorithm SAL.46

The second row of Table IIA shows that, in more than
90% of the cases, there is good structural alignment, with
the percent of residues aligned on the basis of SAL
tracking the trend of the average coverage from the given
variant of threading. Reflecting the fact that the original
version of PROSPECTOR37 (column 2) recognizes the most
easy-to-identify target/template pairs, its best structural
alignment also has the highest coverage. In all cases, the
fraction of target/best template pairs having good struc-
tural alignment is more than 90% on average for all
variants of PROSPECTOR. Moreover, on average, 15–20%
more target/templates have good structural alignments
than threading-based alignments (compare row 3 with row
9), but the average structural alignment coverage is about
10% less for the templates from Qrev, H, Hrev, � and �rev

threading. As shown in the next section, this reflects the
fact that the alignment errors in the templates identified
by PROSPECTOR_3	 responsible for the high threading
based RMSD to native often arise from the N- and/or
C-terminal fragments having native secondary structure
but different orientations from that in the native state
(similar errors are seen for the mutual orientation of
domains). On the basis of secondary structure, they are
similar, but better structural alignments can be obtained
by truncating these regions. In the next section, this effect
is shown in a number of representative examples.

The Q and Qrev series are qualitatively different in that
the average coverage of the best of the top five templates is
either the same or lower than the best structural align-
ment. This reflects the fact that for the more difficult cases
(unrecognized by the other threading algorithms), these
versions can identify good local regions but not global
regions (note that these algorithms use an entirely differ-
ent type of secondary structure prediction scheme with no
structural information used in the first pass; thus, some-
times they can pull locally similar regions, probably from
evolutionary information alone). In such cases, the struc-
tural alignment algorithms can then recognize large,
similar regions.

Analysis of Apparent Errors for Best Template with
Z > Zgood

We consider here a representative set of cases taken
from the PROSPECTOR_3Hrev results, because they are
typical. Considering those proteins that are aligned to a
single template with Z-score � Zgood, of which there are 76
with 27% average sequence identity between target and
template; 62 of the 76 have acceptable threading-based
alignments with RMSD values � 6.5 Å, with an average
RMSD value of 3.6 Å and 91% coverage. However, most of
the 14 apparently poorly predicted target proteins actually
have well predicted regions. Indeed, 73 of the 76 proteins
have an average RMSD of 2.0 Å and 74% coverage, with a
minimum of 20 residues aligned. The problem is to detect

the well-predicted regions within those 11 proteins that
have a relatively poor global RMSD, but good RMSD over a
significant fraction of the alignment. Ideally, the thread-
ing algorithm itself should eliminate the poorly predicted
regions, but in practice sometimes it doesn’t. What is
happening? Are there general trends observed for these
unsuccessful cases?

The first of the 14 cases with a relatively high global
RMSD is the 1an7A (136 residues in length)/1iu6A, S8
ribosomal protein/electron transport protein target/tem-
plate pair which has a Z-score of 16.6 and a global RMSD of
7.4 Å over the 121 aligned residues, but a RMSD of 1.9 Å
over 89 residues. The native structure has two domains;
each domain has a good RMSD to native but their mutual
orientation is different from native. This is the source of
the relatively high global RMSD. In fact, the N-terminal
68 residues have a RMSD from native of 2.2 Å. Similarly,
the RMSD of residues 94–136 is 3.7 Å. The superposition
of each of these domains onto its native structure is shown
in Figure 2(a), in the upper and lower sets of superimposed
structures respectively.

The next target/template pair examined was 1baq_ (139
residues in length)/1eyvA. Both are transcription termina-
tion factors. They are matched with a Z-score of 30.5, with
the former an obsolete entry, and a global RMSD of 10.8 Å
over the 124 aligned residues, 19 residues of which have a
RMSD of 3.5 Å. While both are helical proteins, there are
significant differences in their topologies that may reflect
problems with the 1baq_ entry.

The 1bmqB (88 residues in length)/1cp3A, the interleu-
kin 1beta converting enzyme/tetrapeptide inhibitor, target/
template pair is matched with a Z-score of 15.9. It has a
global RMSD of 6.9 Å over the 84 aligned residues, with 79
residues aligned with a RMSD of 1.5 Å. The source of this
error is a large gap between residues 2 and 3, due to a
break in the chain in the PDB file of 1cp3A. If residue 2 is
eliminated, then the RMSD is 3.7 Å over the remaining 83
residues. The resulting superposition is shown in Figure
2(b).

The next problematic pair is 1c20A (128 residues)/
1bmy_, DNA binding domain from the dead ringer protein/
DNA binding protein, which are matched with a Z-score of
19.9, and have a RMSD of 10.7 Å over the 98 aligned
residues. Here, the N-terminal helices differ in orienta-
tion. Also, the C-terminal helix has a kink in the native
structure, whereas the corresponding helix is straight in
the template. If the central 57 residues are aligned, then
the corresponding RMSD is 3.8 Å. Again, there are subtle-
ties in the orientation that are not fully captured by
threading, but the core is well described. The resulting
superposition is shown in Figure 2(c).

The next pair is 1f2rI (100 residues in length)/1d4bA,
DNA binding protein/ apoptosis protein, which is matched
with a Z-score of 19.4, with 97 residues aligned with a
RMSD of 8.8 Å, but 44 residues can be aligned with a
RMSD of 3.0 Å. This particular pair has very long, poorly
aligned beta strands on the N-terminus that do not
interact with the core of the protein, with smaller errors in
the C-terminal strands. If both are excised, then the
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RMSD over the remaining 70 atoms is 3.5 Å. The resulting
superposition is shown in Figure 2(d).

The 1fm2A (151 residues in length)/1ai4A, cephalospo-
rin acylase/penicillin acylase pair was matched with a
Z-score of 23.0 and a RMSD of 12.0 Å over the 143 aligned
residues, with 17 residues aligned with a RMSD of 1.8 Å.
The major difference is in the location of the C-terminal
helix that has a significant gap in the alignment to the
template structure. (The secondary structure is correct,
but the location is incorrect). If this C-terminal helix
(which is not interacting in the native structure with the
protein core) is eliminated, then the resulting RMSD is 6.4
Å over 122 residues. The topology is completely correct,
with minor shifts in secondary structure. The resulting
superposition is shown in Figure 2(e).

The 1hpwA (129 residues in length)/1dzoA/ contractile
protein, pilin/truncated pilin pair has a Z-score of 19.9, and
a RMSD of 7.4 Å over its 110 aligned residues, with 44
residues aligned with a RMSD of 3.4 Å. Here, the major
difference between the two structures is at the C-terminal
�-strand as well as in the N-terminal residues at the end of
a helix. There is also a difference in geometry of a hairpin
between residues 40 and 48, but overall the fold is the
same. If these regions are deleted, the RMSD is 6.6 Å over
83 residues. The resulting superposition is shown in
Figure 2(f).

The match of 1hqi_(90 residues in length)/1ckv_, phenol-
hydroxylase/hydroxylase regulatory protein pair has a
Z-score of 18.9, with a RMSD of 7.3 Å over its 89 aligned
residues. There is a 36-residue region with a RMSD of 2.9
Å. As shown in Figure 2(g), the global topologies of the two
proteins are absolutely identical, with relatively small
shifts between corresponding secondary structural ele-
ments.

We next consider the target/template pair, 1k3kA (146
residues in length)/1af3_, apoptosis protein, BCL-2 ho-
molog from Kaposi’s Sarcoma/ BCL-XL apoptosis inhibi-
tory protein, which is matched with a Z-score of 19.3 and a
RMSD of 7.5 Å over the 129 aligned residues. There is an
83-residue fragment that aligns with a RMSD of 3.0 Å. The
predicted template alignment has an alignment error
associated with the N-terminal helix. If this region is
eliminated, as shown in Figure 2(h), the resulting RMSD is
4.6 Å over 106 residues.

Another example is 1k5xD (178 residues in length)/
1c05A, 80S Ribosomal protein/the S4 Delta 41 ribosomal
protein, target/template pair, which is matched with a
Z-score of 18.0 and a RMSD of 8.7 Å over its 136 aligned
residues, with a 66 residue fragment having a RMSD of 2.4
Å. Similar to many previous cases described above, the
error is in the orientation of the unattached N-terminal
helix/strand not associated with interactions with the core.
Also, there are some shifts associated with the C-terminal
strand. Eliminating these regions gives the 66-residue
fragment described above. In Figure 2(i), we show the full
alignment in order to illustrate these issues and the fact
that the global topology of the target and template are
clearly related.

Fig. 2. Selected target/template alignments from PROSPECTOR_3Hrev

of the 14 target (green)/templates (red) for which Z � Zgood, but the global
RMSD of the alignment was greater than 6.5 Å. (a) 1an7A/1i6uA target/
template pair. The N-terminal 68 residues (upper) have a RMSD from native
of 2.2 Å. Similarly, the RMSD of residues 94–136 (lower) is 3.7 Å. The
superposition of each domain is shown. (b) 1bmqB/1cp3A pair without
residue 2. The RMSD is 3.7 Å over 83 residues. The resulting superposition
is shown. (c) 1c20A/1bmy_ target/template pair. The central 57 residues are
aligned, and then the corresponding RMSD is 3.8 Å. The resulting superposi-
tion is shown. Again, there are subtleties in the orientation that are not fully
captured by threading, but with the core well described. (d) 1f2rI/1d4bA
target/template pair. Eliminating the N/C termini, the RMSD over the
remaining 70 atoms is 3.5 Å. The resulting superposition is shown. (e)
1fm2A/1ai4A target/template pair. Eliminating the C-terminal helix, then the
resulting RMSD is 6.4 Å over 122 residues. The resulting superposition is
shown. (f) 1hpwA/1dzoA target/template pair. Eliminating the C-terminal
�-strand as well as the N-terminus, and a hairpin between residues 40–48,
the RMSD is 6.6 Å over 83 residues. The resulting superposition is shown. (g)
1hqi_/1ckv_, target/template pair has a RMSD of 7.3 Å over its 89 aligned
residues. There is a 36-residue region with a RMSD of 2.9 Å. As shown, the
global topologies of the two proteins are absolutely identical with relatively
small shifts between corresponding secondary structural elements. (h)
1k3kA/1af3_, target/template pair shown without the N terminal helix. The
resulting RMSD is 4.6 Å over 106 residues. (i) 1k5xD/1c05A target/template
pair has a RMSD of 8.7 Å over its 136 aligned residues, with a 66 residue
fragment having a RMSD of 2.4 Å. The errors in the orientation of the
unattached N-terminal helix/strand not associated with interactions with the
core. Also, there are some shifts associated with the C-terminal strand.
Eliminating these regions gives the 66-residue fragment described above.
The full alignment is shown. (j) 1mgtA/1eh6A target/template pair has a
RMSD of 7.5 Å for its 151 aligned residues and a RMSD of 1.6 Å for 97
residues. The target and template structures differ somewhat in the N-
terminus, with one helix replaced by a beta strand. The full-length alignment
is shown. (k) 1qb2A/1hq1A target/template pair has a RMSD of 9.4 Å for its
71 aligned residues, and for 38 of these, the RMSD is 1.1 Å with 40%
sequence identity. Here, the two proteins differ by the location of a non-
interacting N-terminal helix. If these residues are eliminated, then the
resulting RMSD is 1.5 Å over 58 residues. The full length alignment is shown.
(l). The 1qbhA/1f3hA target/template pair. After removing the N/C terminal
fragments, as shown, the RMSD is 5.2 Å over 65 residues.

510 J. SKOLNICK ET AL.



The next example is the 1mgtA (169 residues in length)/
1eh6A, methylguanine-DNA methyl transferase/alkylgua-
nine-DNA methyl transferase, target/template pair, which
is matched with a Z-score of 26 and a RMSD of 7.5 Å for its
151 aligned residues. It has a RMSD of 1.6 Å over 97
residues, where the pairwise sequence identity between
target and template is 42%. The target and template
structures differ somewhat at the N-terminus, with one
helix replaced by a beta strand. The full-length alignment
is shown in Figure 2(j).

Another pair is 1qb2A (106 residues in length)/1hq1A,
signal recognition particle/RNA signaling protein, which
match with a Z-score of 17.1 and a RMSD of 9.4 Å for 71
aligned residues. For 38 of these, the RMSD is 1.1 Å with
40% sequence identity. Here, the two proteins differ by the
location of a non-interacting N-terminal helix. If these
residues are eliminated, then the resulting RMSD is 1.5 Å
over 58 residues. The full 71-residue alignment is shown in
Figure 2(k).

The 1qbhA (101 residues in length)/1f3hA, apoptosis
inhibitor/antiapoptotic protein, target/template pair is
matched with a Z-score of 22.9 and a RMSD of 8.9 Å for its
aligned 100 residues; of these, there is a 24 residue
fragment with a RMSD of 3.1 Å. The prediction here
repeats the pattern of errors in the N/C terminal second-
ary structural elements whose secondary structure type is
essentially correct, but whose orientations are in error. If
we remove the N/C terminal fragments, the RMSD is 5.2 Å
over 65 residues, as shown in Figure 2(l).

Finally, the 1ehdA (88 residues in length)/1baa_, isolec-
tin/endochitinase, pair is matched with a Z-score of 55!
However, the RMSD between the template and native is
12.1 Å over the 76 template aligned residues. The global
folds of both proteins are entirely different. All versions of
PROSPECTOR_3	 match 1ehdA to 1baa_, and both the
close and distant sequence profiles also assign this particu-
lar target/template pair. Unfortunately, while a plausible
structural alignment can be made, it appears that this
prediction is incorrect, but we have been unable to identify
its cause.

In summary, of the 14 proteins that do not have good
alignments from PROSPECTOR_3Hrev, all but one of
them are in fact highly significant, with many errors
resulting either from the misprediction or misorientation
of N- or C-terminal secondary structural elements whose
secondary structure itself is correctly predicted, the mispre-
diction of the mutual orientation of two domains, or, in
rare cases, insertions in loops [see Fig. 2(f)]. Algorithms
that readjust the orientation of such fragments could in
principle extend the length of the accurate regions as well
as refine the alignment. This forms the basis of the
TASSER algorithm that is described elsewhere.13

Properties of The Easy Set

Based on the above considerations and the fact that the
PROSPECTOR_3	 algorithm usually provides templates
with reasonable accuracy when Z � Zstruct, we the pro-
ceeded to construct the easy set. On the basis of the
performance of the PROSPECTOR_3	 variants, we took

the templates in the following order as described in the
Materials and Methods section: �rev, Hrev, �, H, Qrev and
Qthe Kth template structure. . The results are compiled in
column 2 of Table IIB. There are a total of 878 easy targets
with an average global pairwise sequence of identity
between the target and template proteins of 22%. Of these,
761 have an acceptable RMSD in at most the top five
templates. Furthermore, relative to the last row of Table
IIA, 87% of the templates in the easy set have RMSD from
native below 6.5 Å, which is a significant improvement in
the percentage of good templates selected and average
coverage over that if any one of the PROSPECTOR_3	
methods alone is used (see Table IIA, row 10). Thus, the
easy target selection procedure generates an enriched set
of good target/template pairs.

Does the full methodology impart any advantages over
simply using the most sensitive of the sequence profile
methods? In column 3 of Table IIB, we compare the results
for the easy set with those obtained just using the most
sensitive of sequence profiles, the distant sequence profiles
from the PROSPECTOR_3Hrev distant profile, m � 1 pass.
Over all RMSD ranges, the entire threading protocol
generates significantly better results over all RMSD ranges,
at the cost of marginally lower average coverage. This
clearly shows that the full methodology is better than the
simple sequence profiles (not to mention that many of the
target/template pairs do not have a significant Z-score to
confidently match the target to the template based on the
PROSPECTOR_3Hrev distant profile, m � 1 pass). Here,
we just use those targets identified as belonging to the
easy set and use the same number of top distant sequence
profile templates as are assigned in the easy set. Overall,
on the basis of the number of targets identified, the
average RMSD and the average coverage, improvement
over using the full methodology is evident.

Contact prediction accuracy

The next question we address is the average accuracy of
the predicted contacts for the easy targets. Table III shows
that the average side chain contact prediction accuracy is
46%, with an average predicted number of contacts per
residue of 2.4 and an average contact order of 32 residues.
Furthermore, the average accuracy of contacts predicted
within �1 residue is 70%. Thus, even though the average

TABLE III. Summary of Side Chain Contact Prediction
Results for the Easy and Medium Sets

Criterion Easy set Medium set

� � 0a 0.46 0.19
� � �1a 0.69 0.42
� � �2a 0.80 0.57
fb,c 2.4 0.90
Contact orderc 32.0 19.0
aAverage fraction of contacts predicted within � � �m residues of a
native contact.
bRatio of the average number of predicted contacts/number of residues
in the protein.
cAverage contact order, i.e., the average residue spacing between
predicted contacts.
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sequence identity is low (22%), they tend to have consis-
tent consensus alignments that can be used to extract
predicted side chain contacts of acceptable accuracy.

Accuracy of local fragments

The next issue we explore is the accuracy of the local
fragments predicted for the easy set. If we focus on
continuous fragments of at least five residues in length,
then the average continuous fragment predicted has a
length of 17.6 residues, with an average RMSD of 2.0 Å
from native. Moreover, on average, about 87% of a target
chain is covered by a minimum of at least one continuous
fragment that is at least five residues in length. The
resulting cumulative RMSD distribution is shown in Table
VIA. We also include an estimate of the statistical signifi-
cance of the set of selected fragments relative to a random
collection of PDB fragments. This can be assessed by the
average Z-score of the relative RMSD (which would be zero
for a random set).61 Interestingly, more than 90% of the
selected fragments have a RMSD from native of �4 Å with
acceptable statistical significance. This would again sug-
gest that a fragment assembly algorithm that employs
these reasonably long fragments might be successful in
improving the initial alignments. This idea forms the basis
of the TASSER assembly algorithm, which in general
results in a systematic improvement in the threading
based alignments, especially for these easy set proteins.62

Properties of the Medium Set

As summarized in Table IIB, there are 606 proteins
assigned to the medium set. Of these, 505 (87%) targets
have acceptable top scoring templates with good structural
alignments and 56% average coverage. Roughly 31% of
these have good threading based alignments, but here the
average coverage is only 40%. The PROSPECTOR_3Hrev

distant profile, m � 1 pass, distant sequence profile
provides only 15% of targets having the top five templates
with a RMSD below 6.5 Å, but the average coverage is 65%.
(Actually, if we examine those proteins of higher coverage,
essentially the same number is found in the medium set
but the coverage is better by about 12% for the
PROSPECTOR_3Hrev distant profile, m � 1 pass provided
alignments.) Thus, while reasonable templates have been
identified in most cases, often the predicted alignment
needs improvement.

Contact prediction accuracy

Reflecting the shorter than average coverage and lower
than average accuracy of the medium set compared to the
easy set, as shown in Table III, column 3, the average
contact prediction accuracy from the templates is 19%,
with many fewer contacts predicted (0.9/residue) and a
much lower contact order of 19 residues. Thus, techniques
need to be developed that improve the quality of the
alignments of the medium set proteins. We do note that
neural network approaches to contact prediction give
about 14–16% accuracy.63

Accuracy of local fragments

We found that there are too few local fragments provided
by the medium set templates to generate significant
results. Interestingly, results of comparable average accu-
racy but greater coverage are provided by the
PROSPECTOR_3Hrev distant profile, m � 1 pass set of
alignments. Thus, for the medium targets we used the top
scoring templates from the PROSPECTOR_3Hrev distant
profile. The resulting cumulative RMSD distribution, aver-
age RMSD, length and relative RMSD Z-score are summa-
rized in Table IVB. (This is in contrast to the contact
predictions that are on average worse by about 5% using

TABLE IVA. Average RMSD and Length Distribution of Continuous Fragments in Easy Set Templatesa

Criterion Fraction of fragments Average RMSD Average length Relative RMSD average Z-score

RMSD � 1 Å 0.27 0.62 11.8 �2.83
RMSD � 2 Å 0.6 1.1 15.6 �2.81
RMSD � 3 Å 0.81 1.5 16.5 �2.61
RMSD � 4 Å 0.92 1.7 17.0 �2.49
RMSD � 5 Å 0.96 1.8 17.2 �2.43
RMSD � 6 Å 0.98 1.9 17.3 �2.40
aCalculated for all continuous alignments five residues or longer in length.

TABLE IVB. Average RMSD and Length Distribution of Continuous Fragments in Medium Set
PROSPECTOR_3Hrev Distant Profile m � 1 Pass Alignmentsa

Criterion Fraction of fragments Average RMSD Average length Relative RMSD average Z-score

RMSD � 1 Å 0.21 0.50 8.8 �2.64
RMSD � 2 Å 0.40 0.98 8.8 �2.17
RMSD � 3 Å 0.62 1.5 8.8 �1.63
RMSD � 4 Å 0.85 2.1 8.9 �1.15
RMSD � 5 Å 0.96 2.3 9.0 �0.98
RMSD � 6 Å 0.98 2.4 9.1 �0.93
aCalculated for all continuous alignments between 7 and 12 residues in length; a size regime chosen because the fragments are most
prevalent in this length regime.
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the PROSPECTOR_3Hrev distant profile, m � 1 pass set of
alignments as compared to the medium set templates).
Here, the average length of the continuous aligned frag-
ments is about nine residues, with the most accurate
non-trivial predictions found for fragments between seven
and 12 residues in length. These have an average align-
ment length of 9.1 residues, an average RMSD of 2.5 Å,
and on average 79% of residues belonging to a minimum of
at least one continuous fragment. In contrast to the easy
set, the average accuracy of the continuous fragments at a
given RMSD threshold is less. What clearly distinguishes
the easy from the medium set is the fact that, in the easy
set, these continuous fragments are longer and cover more
of the molecule. PROSPECTOR_3 works by stringing
together these continuous fragment alignments. When
such fragments are longer and cover more of the molecule,
high Z-scores and confident fold identifications result;
when this is not the case, there are still significant
predicted chunks that could be used in fragment assembly.

Composite Results of the Easy/Medium Sets

Combining the easy and medium sets, 63% (927/1482) of
the benchmark targets have an acceptable template on the
basis of the PROSPECTOR_3 provided alignment (with a
RMSD below 6.5 Å and over 80% average coverage).
Furthermore, 91% (1348/1482) of the proteins have a good
structural alignment with a RMSD below 6.5 Å with 72%
average coverage. These results are consistent with the
observation that the PDB is a covering set of single-
domain proteins. Thus, PROSPECTOR fails to identify
related folds for about 10% of the target sequences, and the
alignment accuracy needs to be improved for one-third of
the targets. Interestingly, there are only nine proteins in
the hard set for which no global template is predicted.

A summary of all results, templates and alignments
may be found on our website for the easy and medium
set results at http://www.bioinformatics.buffalo.edu/
threadingbenchmark/easy and http://www.bioinformatics.
buffalo.edu/threadingbenchmark/medium respectively.

Comparison to Results of PSIBLAST

If PSIBLAST20 is run against our template library and
all targets with an E-value less than 0.01 are selected,
then 487/1491 targets satisfy this criterion. A total of 462
target proteins in the PSIBLAST alignment have a RMSD
below 6.5 Å. As shown in Table V, column 3, the average
coverage of these proteins is only 77%. In contrast, in the
easy set alone, 761 proteins with good global alignments
were selected. Of the 487 targets identified by PSIBLAST,
448 belong to the easy set and 11 to the medium set. If we
select the more accurate regions of the PROSPECTOR_3	
alignments (see Table V, column 2) that are obtained from
regions of the PROSPECTOR_3	 alignments having a
RMSD to native of less than 5 Å, then the coverage is
essentially the same as in PSIBLAST (see Table V, column
3), but the accuracy of the PROSPECTOR_3	 alignments
is significantly better over all RMSD ranges. Thus, on the
basis of both accuracy and fold recognition ability, consis-
tent with the results of CASP5, we conclude that the

PROSPECTOR_3 belongs to the new generation of im-
proved threading algorithms.13,35

Comparison to Other State-of-the-Art Fold
Recognition/Sequence Based Methods

We next compare the results of PROSPECTOR_3	 with
those of other state-of-the-art methods. To make the
comparison truly informative, each of the methods must be
compared for the same set of targets against the same
template library. Otherwise details of the fold library
(completeness, presence of homologs, fold space coverage)
will be confused with the actual performance of the method
itself. Such a consistent comparison is not possible using
EVA64 or LIVEBENCH,65 in which different template
libraries are used for different methodologies. It is our
intention to include PROSPECTOR_3	 in LIVEBENCH.
To comprehensively and fairly benchmark PROSPEC-
TOR_3	 against other state-of-the-art algorithms, we
have run one of the best threading algorithms (PROS-
PECT),35 one of the best of the sequence methods (SAM-
T99),25 and a newly developed fold recognition algorithm
that uses sequence profiles and secondary structure
(SPARK)60 for 1482 targets against the same template
library as was used in the evaluation of PROSPEC-
TOR_3	.

There remains the issue of what cut-off of target/
template score significance should be used for PROSPECT,
SAM-T99 and SPARK. In any threading/sequence method,
an acceptable accuracy criterion for fold identification/
alignment quality must be specified. Here, for both SAM-
T99 and SPARK, we opted for a cutoff that gives roughly
79% accuracy in the sense that the best of the top five
structures has a RMSD less than 6.5 Å. The problem with
PROSPECT is that this will identify too few templates.
Thus, we reduced the Z-score cutoff to a value for which
69% accuracy is obtained. This was compared against the
easy set from PROSPECTOR_3	, for which we attained
87% accuracy for good fold identification.

The resulting comparison against the easy set of protein
results from PROSPECTOR_3	 is shown in Table VI, with

TABLE V. Comparison of Targets Identified Assigned by
PSIBLAST to Easy/Medium Sets

Selection criterion Easy/medium setsa,b PSIBLAST resultsb

RMSD � 1 Å 88/1.2/0.82 18/0.81/0.64
RMSD � 2 Å 383/1.8/0.7 170/1.5/0.77
RMSD � 3 Å 454/1.9/0.75 348/2.0/0.78
RMSD � 4 Å 459/2.0/0.75 414/2.2/0.78
RMSD � 5 Å 459/2.0/0.75 436/2.3/0.77
RMSD � 6 Å 459/2.0/0.75 453/2.5/0.77
RMSD � 6.5 Å 459/2.0/0.75 462/2.5/0.77
% � 6.5 Åb 95%
aListed in columns 2–3 are the numbers of target proteins whose best
of top two templates has an RMSD below the threshold specified in
column 1, the average RMSD and the average coverage. Listed in
columns 2 are the results from the easy/medium proteins whose
targets have an E-value less than or equal to 0.01 as identified by
PSIBLAST and those residues have a local RMSD below 5 Å.
bPercent of targets that with E-value � 0.01 that have an RMSD
� 6.5 Å.
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the corresponding Z-score cut-offs shown in the footnote.
On the basis of the number of templates identified at a
given RMSD threshold and the overall accuracy, we con-
cluded that PROSPECTOR_3	 performs the best. It is
followed by SAM-T99, then SPARK and then PROSPECT.
PROSPECT does, however, give slightly higher coverage
than the alternative approaches. Indeed, at a RMSD
threshold of 4 Å, PROSPECTOR_3	 identified 199 more
target/template pairs than did the closest competing
method, SAM-T99. At a RMSD threshold of 6.5 Å, 159
more good target/template pairs were identified compared
to SAM-T99. Of course, because in principle all targets
actually have good templates in the template library,46 the
fact that we still fail to identify roughly half of these
templates as belonging to the easy set indicates that all
methods need significant improvement.

There is an interesting point that emerges from this
analysis. Different threading algorithms recognize differ-
ent target/template pairs in the high confidence regime
(viz. easy proteins). Thus, we should apply each threading
algorithm to identify easy targets using the same method-
ology as that used in PROSPECTOR_3	 and build a
composite algorithm that basically tiles fold space using
the union of all easy targets. We are now in the process of
incorporating such an approach to identify accurate tem-
plates in our TASSER62 protein fragment assembly/
refinement approach.

Application to Small ORFs in the M. genitalium,
E. coli and S. cerevisiae Genomes

To examine whether or not the results presented here
for the PDB benchmark also hold for the small ORFS (200
residues or smaller) in genomes, we next applied the
PROSPECTOR_3 methodology to the M. genitalium,47 E.
coli,48 and S. cerevisiae1 genomes. In contrast to the PDB
benchmark described above, homologues were allowed in
this study. We present an overview of the essential results
to establish whether they are entirely consistent with the
PDB benchmark; more detailed analysis of all of the ORFs
in these genomes can be found elsewhere.66

M. genitalium Genome Threading Results

The M. genitalium47 genome has 128 ORFs of less than
200 residues, of which 93 were assigned to the easy set
with an average coverage of 87% and 35 were assigned to
the medium set, with an average coverage of 54%. As in
the PDB benchmark, there were few (or in this case, no)
hard targets. A slightly larger percentage was classified as
easy targets (73%) compared to the PDB benchmark (59%),
but this reflects the fact that homologous proteins were not
excluded. Of the ORFs in the easy set, 59 were less than
150 residues in length. In contrast, using the previous
version of PROSPECTOR,37 we were only able to assign 35
ORFs of less than 150 residues in length to templates.67

This is due partly to the somewhat smaller template
library that was used a year ago (about 3000 templates
compared to the 3575 templates used now), but more
importantly, it reflects the improvement in our ability to
recognize templates. As others have observed, and as
shown in Table VIIA, column 3, �/� proteins represent the
dominant secondary structure class in this genome, with
the Rossmann fold predicted to be the most dominant fold
type, and the �/� plaits predicted to be the second most
dominant (see Table VIIB, column 2). The resulting fold
predictions can be found at http://www.bioinformatics.buffalo.
edu/threading/mgen/easy and http://www.bioinformatics.
buffalo.edu/threading/mgen/medium respectively.

E. coli Genome Threading Results

In the E. coli genome,48 there are 1360 ORFs of less than
200 residues, of which PROSPECTOR_3 assigned 829

TABLE VI. Comparison of Easy Targets with PROSPECT, SAM-T99, and SPARK

Selection criterion Easya PROSPECTb SAM-T99c SPARKd

Total 877/4.1/0.85 607/5.0/0.91 765/5.0/0.86 734/5.2/0.90
RMSD � 2 Å 150/1.5/0.89 112/2.3/0.94 74/1.6/0.87 43/1.6/0.95
RMSD � 3 Å 391/2.1/0.89 222/2.9/0.93 228/2.3/0.87 154/2.3/0.94
RMSD � 4 Å 582/2.6/0.86 311/3.3/0.92 383/2.8/0.88 319/2.9/0.92
RMSD � 5 Å 689/2.9/0.86 311/3.3/0.92 506/3.2/0.87 453/3.4/0.91
RMSD � 6 Å 751/3.1/0.86 397/3.8/0.92 581/3.5/0.87 532/3.7/0.91
RMSD � 6.5 Å 761/3.1/0.86 418/3.9/0.92 602/3.6/0.87 554/3.8/0.91
% � 6.5 Åd 87% 69% 79% 79%
aFor PROSPECTOR_3�, easy targets were considered.
bFor PROSPECT,35 of 1482 targets, up to the top five target template pairs with a Z-score � 3
were considered.
cFor SAM-T99,28 of 1482 targets, up to the top five target template pairs with a Z-score � 9.5 were
considered.
dFor SPARK,60 of 1482 targets, up to the top five target template pairs with a Z-score � 6.6 are
considered. Percent of targets satisfying the selection criteria that have an RMSD � 6.5 Å.

TABLE VIIA. Distribution of Secondary Structure Class
for Easy & Medium Proteins of M. genitalium,

E. coli, and S. cerevisiae Genomesa

Fold class M. genitalium E. coli S. cerevisiae

� 23.5% 23.2% 29.1%
� 15.7% 16.7% 20.1%
�/� 58.8% 58.8% 49.0%
Small 2.0% 1.3% 1.8%
aFor all ORFs � 200 residues in length.
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(61%) ORFs to the easy set, with an average coverage of
82% and 521 ORFs (38%) to the medium set, with an
average coverage of 51%. Only a very small number (10)
was assigned to the hard set. These results are very
similar to the PDB benchmark results, with a slightly
larger percentage of targets assigned to the easy set in E.
coli due to the fact that homologues were permitted. Once
again, in this real world case, there were very few puta-
tively New Fold proteins.

The resulting distribution of proteins of different second-
ary structure classes is shown in Table VIIA, column 3,
whereas in M. genitalium, �/� proteins are dominant. As
shown in Table VIIB, column 3, the most populated fold is
the Rossmann fold, comprising about 18% of all assigned
ORFs. This is followed by the Arc repressor mutant fold,
which is predicted to be adopted by about 9% of the ORFs.
Next is the immunoglobulin-like fold (a �-protein) pre-
dicted to be adopted by about 6% of the ORFs. All fold
predictions may be found on our website at http://
www.bioinformatics.buffalo.edu/threading/ecoli/easy and
http://www.bioinformatics.buffalo.edu/threading/ecoli/
medium respectively.

S. cerevisiae Genome Threading Results

In this genome,1 there are 1496 ORFs of 200 residues in
length or smaller. Of these, 793 (53%) are assigned to the
easy set, with an average alignment coverage of 75%, and
682 (45%) are assigned to the medium set, with an average
coverage of 65%. Thus, 1475/1496 ORFs probably have
their fold identified; again, there are very few (21) hard
targets (i.e. there are very few putative New Folds). The
distribution of secondary class type is shown in Table
VIIA, column 4, and the top scoring topologies are shown
in Table VIIB, column 4. The �/� proteins still dominate,
with the Rossmann fold being most populated, but relative
to M. genitalium and E. coli genomes, the relative popula-
tion of ORFs adopting the Rossmann fold is significantly
reduced. New entries into the most populated folds, the
Double Stranded RNA binding domain is the second most
common, and the Glutaredoxin fold ranks fourth. All fold
predictions may be found on our website at http://
www.bioinformatics.buffalo.edu/threading/yeast/easy and
http://www.bioinformatics.buffalo.edu/threading/yeast/
medium.

Some Observations About Genome Scale Threading

From Table VIIA, it is apparent that the distributions of
secondary structure types for these three genomes are
quite similar, with that of the M. genitalium and E. coli
genomes being very close and S. cerevisiae having a
relative reduction of about 10% in �/� proteins, which
nevertheless is the dominant secondary structure type in
all three genomes. The next most populated secondary
structure class is helical proteins. Also, as shown in Table
VIIB, the Rossmann fold is the most prevalent single fold
type in all three genomes, with �/� plaits also highly
populated. For all but a very few proteins in all three
genomes, as was the case in the PDB benchmark, it is
quite likely that their topology has been identified. This is
further evidence supporting the observation that the PDB
is a covering set of single domain protein structures.46

Nevertheless, based on the PDB benchmark results, only
about 60% of the ORFs considered are likely to have good
alignments. Additional techniques that build entire chains
and refine the results are required for full assign-
ment.62,67–70

Discussion

Recently, we have demonstrated that, for single domain
proteins, the PDB is complete at the level of low-to-
moderate-resolution structures.46 These results strongly
suggest that the most promising means of solving the
protein folding problem is developing threading algo-
rithms that are capable of detecting proteins with similar
folds, whether or not the target and template sequences
are evolutionarily related. While this has been demon-
strated in principle, in practice the problem is developing
threading algorithms that can detect such fold relation-
ships. In this spirit, here we have described and bench-
marked the PROSPECTOR_3 series of threading algo-
rithms that employ a variety of scoring functions. Our
approach is based on the idea that, for imperfect algo-
rithms, different scoring functions will match different
pairs of target/template proteins; if one can establish
reliability criteria, then one can combine a series of such
scoring functions to provide a larger number of accurate
predictions. Thus, we have developed criteria to define the
easy, medium and hard sets of proteins. Easy proteins are
very likely to have accurate alignments of high coverage.
Medium proteins contain information about their fold, but

TABLE VIIB. Top Five Abundant Topologies (CATH) in the M. genitalium, E. coli, and S. cerevisiae Genomes
for all ORFs ORFs < 200 Residues in Length

M. genitalium (%)a E. colia S. cerevisiaea

Rossmann fold 3.40.50 (13.0) Rossmann fold 3.40.50 (18.3) Rossmann fold 3.40.50 (8.6)
�� plaits 3.30.70 (13.1) Arc repressor mutant subunit A 1.10.10 (8.7) Double stranded RNA binding domain

3.30.160 (6.8)
OB fold 2.40.50 (6.6) �� plaits 3.30.70 (7.2) �� plaits 3.30.70 (6.5)
Nucleotidyltransferase domain 5 3.30.420 (4.9) Immunoglobulin-like 2.60.40 (5.5) Glutaredoxin 3.40.30 (4.4)
Ribosomal RNA binding protein S15 1.10.287

(4.9)
Aminopeptidase 3.40.630 (3.2) SH3 type barrels 2.30.30 (4.4)

aPercentage of the total number of detected CATH domains is indicated in parentheses.
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the detailed alignment can be in error, and hard proteins
are those that, from the point of view of the algorithm, fail
to have a known template structure assigned.

Compared to our previous generation of PROSPECTOR,
not only has the algorithm been improved by our ability to
do reasonably successful classification of the reliability of
our results, but our predictive ability has been improved
by a number of factors. Following the suggestion of Kar-
plus,30 using both the forward and reversed sequences, we
have enhanced the sensitivity of fold recognition. We have
introduced a variety of more specific pair potentials and
used variants that have different dependencies on second-
ary structure prediction accuracy. By identifying structur-
ally similar regions in multiple templates, we can identify
the highly accurate regions of the alignments. By reducing
the terminal gap penalties to zero (not a new idea71,72), we
can increase our ability to find related topologies as well as
generate significant alignments. By establishing rigorous
Z-score thresholds for significant results, we found that,
even if the apparent global RMSD is high, in almost all
cases it reflects differences in packing angles of secondary
or supersecondary elements, especially at the N- and C-
termini. Continuous aligned regions provide rather accu-
rate native-like fragments that can be used in fold assem-
bly algorithms. The last two observations have motivated
the development of the TASSER fold threading/assembly/
refinement algorithm.62

On an encouraging note, the current version of PROS-
PECTOR has the ability to identify good template struc-
tures for over 90% of a set of nonhomologous or weakly
homologous sequences for the PDB benchmark. Unfortu-
nately, the alignments are good for only two-thirds of all
target sequences, suggesting that algorithms that improve
alignment accuracy are needed for the remaining cases.
This might be achieved by first running PROSPECTOR
and then refining the subsequent alignment,62 or by using
alternative threading approaches and developing fold reli-
ability classification schemes such as those used here (that
define the easy, medium and hard sets) to ‘tile’ target
sequence space (viz. to combine different threading algo-
rithms, each of which has distinct, partially overlapping
sets of high reliability target sequence predictions in order
to generate more accurate composite results). Both ap-
proaches are currently being explored.

Application of PROSPECTOR_3 to the M. genitalium,47

E. coli48 and S. cerevisiae1 genomes yields comparable
results to those from the PDB benchmark, suggesting that
the PDB benchmark is representative of what can be
expected when PROSPECTOR_3 is applied on a large
scale to typical target sequences, that is, very few proteins
assigned to the hard set and about 60% of the proteins
assigned to the easy set. As others have found, �/� proteins
are the dominant secondary structure class in these ge-
nomes,2,4,73,74 with the Rossmann fold being the most
populated. Clearly, these threading results provide a
useful starting point, both for functional annotation based
on the threading template identification/target sequence
alignments18 and for fragments that will be used in

subsequent fragment assembly algorithms.62 Such efforts
are currently underway for these three genomes.

At this juncture, there are a number of possible direc-
tions in which to further improve PROSPECTOR_3. One
possibility involves the use of profile–profile approaches to
generate better initial alignments;29 alternatively, other
threading algorithms could be used to provide these initial
alignments as well as a set of predicted seed contacts that
will be used in subsequent threading iterations. We can
also use distance geometry to combine the set of tem-
plates75,76 and to build consensus alignments to be used
either in contact prediction or subsequent folding studies.
Another issue that will be immediately addressed is the
benchmarking of proteins between 200 and 300 residues in
length to determine the algorithm’s performance on larger
proteins and to assess whether our ability to classify
targets into easy and medium proteins holds. As the
targets get larger, our structural alignment studies sug-
gest46 that it will take approximately five templates to
generate 90% alignment coverage. Techniques that com-
bine multiple templates by aligning different regions will
have to be developed. Overall, though, by the careful
benchmarking of PROSPECTOR_3 on a comprehensive
and representative set of all protein domains below 201
residues in length, we now have a very good idea of the
strengths and weaknesses of this algorithm. Most encour-
agingly, these insights seem to carry over when PROSPEC-
TOR_3 is applied to genomes. Thus, while much remains
to be done, there is encouraging progress in fold recogni-
tion. Another significant conclusions is that PROSPEC-
TOR_3 is among the next generation of threading algo-
rithms that significantly outperform PSIBLAST.
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