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ABSTRACT Among the major difficulties in pro-
tein structure prediction is the roughness of the
energy landscape that must be searched for the
global energy minimum. To address this issue, we
have developed a novel Monte Carlo algorithm called
parallel hyperbolic sampling (PHS) that logarithmi-
cally flattens local high-energy barriers and, there-
fore, allows the simulation to tunnel more efficiently
through energetically inaccessible regions to low-
energy valleys. Here, we show the utility of this
approach by applying it to the SICHO (SIde-CHain-
Only) protein model. For the same CPU time, the
parallel hyperbolic sampling method can identify
much lower energy states and explore a larger
region phase space than the commonly used replica
sampling (RS) Monte Carlo method. By clustering
the simulated structures obtained in the PHS imple-
mentation of the SICHO model, we can successfully
predict, among a representative benchmark 65 pro-
teins set, 50 cases in which one of the top 5 clusters
have a root-mean-square deviation (RMSD) from the
native structure below 6.5 Å. Compared with our
previous calculations that used RS as the conforma-
tional search procedure, the number of successful
predictions increased by four and the CPU cost is
reduced. By comparing the structure clusters pro-
duced by both PHS and RS, we find a strong correla-
tion between the quality of predicted structures and
the minimum relative RMSD (mrRMSD) of struc-
tures clusters identified by using different search
engines. This mrRMSD correlation may be useful in
blind prediction as an indicator of the likelihood of
successful folds. Proteins 2002;48:192–201.
© 2002 Wiley-Liss, Inc.

INTRODUCTION

One of the key problems in the prediction of a protein’s
structure from its amino acid sequence is the development
of a powerful optimization method that can find within a
feasible amount of computer time the minimum energy
structure; this corresponds to the native state according to
the thermodynamic hypothesis of Anfinsen.1 In principle,
this global minimum energy state could be found from
Metropolis Monte Carlo (MC) simulations where the prob-
ability of finding low-energy structures is exponentially
enhanced compared with a random walk. However, be-
cause the energy landscape of the real protein sequences is
characterized by numerous local minima separated by

energy barriers, at low temperatures the Metropolis Monte
Carlo scheme often gets trapped in these local minima.
Thus, in practice, only small parts of the entire phase
space are explored, thereby rendering the traditional
Monte Carlo method impractical for protein structure
prediction.2–4

One of the most efficient techniques in literature that is
designed to overcome this local minima trapping is the
replica sampling (RS) algorithm,5,6 in which the simula-
tions of several replicas are implemented at different
temperatures. By exchanging the states at different tem-
peratures, the higher-temperature process can help the
lower-temperature structures cross the energy barriers
between different basins and thereby achieve ergodicity.
In a recent work,7 we applied the RS technique to the
simulation of a benchmark set of 65 proteins and used a
reduced protein model, the SICHO (SIde-CHain Only)
lattice model8 to represent the protein. By clustering the
produced structures, we have successfully predicted 46
proteins where one of the top five clusters has a root-mean-
square deviation (RMSD) from the native state below 6.5
Å. However, although most of such cases could be found in
one trajectory, to get all 46 cases, we found we needed to
run at least 50 trajectories,† each costing about 72 h of
CPU time on a 750-MHz Pentium III processor for an
average length sequence (�100 residues). Obviously, this
is very computationally demanding, and algorithms that
reduce the requisite CPU time are needed.

Here, we propose a parallel hyperbolic Monte Carlo
algorithm that can speed up the thermalization of the
protein-folding process by flattening the local high-energy
barriers found on the rough energy landscape. Thus,
simulations at different temperatures are implemented on
a dynamic, relatively smooth landscape. We apply this
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approach to a test set of 25 proteins and trace the energy
and structures of the proteins at each MC step. We find
that, for the same CPU time, parallel hyperbolic sampling
(PHS) can identify much lower-energy structures and
cover a larger region of structure phase space than replica
sampling can. As a comparison with our previous work,7

we use the new methodology on the same benchmark set of
65 proteins. We successfully predict 50 cases having at
most five clusters, at least one whose RMSD from the
native state is below 6.5 Å, whereas the CPU time is
significantly reduced because here only one trajectory is
needed.

By calculating the distance between the structure clus-
ters produced by both PHS and RS simulations, we find
that there exists a strong correlation between the quality
of predicted structures and the minimum relative RMSD
between structure clusters produced by different search
engines. This correlation in mrRMSD may be useful in
blind prediction as an indicator of the likelihood of success-
ful fold prediction.9 As a confirmation, we show that in our
fold experiment, the prediction power of choosing the
common cluster from PHS and RS samples is more favor-
able than that of choosing the lowest-energy cluster ob-
tained from PHS alone.

MATERIALS AND METHODS

The basic idea of PHS is to apply a nonlinear transforma-
tion to the energy E

Ẽ � � arcsh�E � E0�, E � E0,
� �, E � E0,

(1)

where E0 is the protein energy of the current structure,
and arcsh is the inverse hyperbolic sine function. Here and
in the future, the energy is scaled by a unit of �0, which
serves to define the dimensionless temperature T in our
calculations.

Obviously, the effective potential Ẽ is dynamically
changed for each step of the simulation. However, this
transformation does preserve the locations of all minima
on the real energy surface E. As shown in Figure 1, the
inverse hyperbolic sine transformation does not signifi-
cantly modify the height of the lower energy barriers over
which Metropolis sampling can jump with reasonable
ease. This feature is important because it allows the
simulation to sample nearby energy regions with compa-
rable efficiency as in canonical Metropolis sampling. How-
ever, for higher-energy barriers, the barrier height is
logarithmically lowered; this can significantly reduce the
trapping time in one local basin. Thus, a simulation based
on Eq. 1 is actually equivalent to a Metropolis implementa-
tion on a much less rough energy landscape.

The idea of transforming energy landscapes is not
new.4,10–13 For example, in the “diffusion equation method,”
Piela et al.10 and Wawak et al.13 produced a smoothed
energy surface by solving the diffusion equation, with the
original energy function as the initial condition; in the
“Liouville equation method,” Ma et al.11 and Andricioaei
and Straub12 coarse grained the potential surface by

integrating the energy function over a Gaussian phase
packet. In both approaches, the positions of the surviving
local energy minima in the deformed surface, which are
controlled by a deformation parameter, usually differ from
the minima positions in the undeformed surface. Thus, a
multiple iterative procedure is required to gradually lower
down the deformation parameter and trace back the
minima of the original energy surface.14 In our transforma-
tion of Eq. 1, however, the energy surface deformation is
based on the instantaneous energy values, and the posi-
tions of all the local energy minima are the same as that of
the bare energy function. Therefore, the additional reversing
process to recover the undeformed minima is not required.
We have also tried various other formats of transforma-
tions in our calculations. But it appears that the hyper-
bolic sine function works best among all our attempts.

The idea of parallel sampling here is similar to those
previously used5,6,15 in which an artificial ensemble consist-
ing of M noninteracting replicas are considered, each at a
distinct and fixed temperature. Two sets of movements are
then taken into account in our simulations:

(i) Local movements in each replica, which consist of
single residue “kink” moves, chain-end moves, two-
residue moves, and small “rigid-body” displacements
of a larger portion of the model chain.8 For a protein
sequence comprised of N residues, a single time unit
consists of N attempts at kink moves, two attempts at
chain-end moves, N�1 attempts at two-bond moves,
and one attempt at a randomly selected large frag-

Fig. 1. Comparison of the hyperbolic weight factor and the Boltzmann
weight factor as a function of the height of the energy barriers. Here
w(E,E0) is defined as the transition probability from a state of energy E0 to
another state of energy E in the Markov process; see Eq. 2.
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ment displacement. Each trial movement is accepted
or rejected according to:

w�E,E0� � exp� � ��Ẽ�

� � exp	 � �arcsh�E � E0�
, E � E0,
1, E � E0,

(2)

where � � 1/kBT is the general inverse temperature.
However, before any energy computation, the test for
excluded volume violation is always performed, and a trial
conformation that would lead to steric collisions of chain
units is rejected. Also, conformations with nonphysical
distances between two consecutive side-chain units are a
priori rejected.

(ii) Swap movements of global conformations between
two replicas (say, i and j). The acceptance probability
of each swap is:

pi7j � exp	��i � �j��Ei � Ej�
. (3)

Although it is not necessary to restrict the swap to the
pairs of replicas associated with neighboring inverse tem-
peratures �i and �i�1, this choice will be optimal because
the acceptance ratio will decrease exponentially with the
difference �� � �i � �j.

To optimize the power of the Monte Carlo algorithm, the
following important parameters should be carefully selected:

First, the highest simulation temperature Thigh should be
high enough to enable the simulation to jump over all the
energy barriers on the artificial landscape defined by Eq. 1
with reasonable ease. The lowest temperature Tlow should be
low enough so that the simulation can scan low-energy
basins in sufficient detail. A qualitative goal for the choice of
Tlow is to make the single Markov process slightly trapped.
We find that the trap status of a single replica simulation is
sensitive to the length of a protein sequence. For longer
sequences, the depth of the energy basin is usually deeper
than that of shorter proteins. Hence, Tlow of longer protein
sequences should be slightly higher than that for shorter ones.

The number of replicas Nrep is another relevant parame-
ter for the implementation. Nrep should be large enough so
that the replicas at adjacent temperatures are near enough
to maintain communication with each other, that is, swaps
can occur with reasonable ease.

The third parameter is Nswap, the number of local
movements between two consecutive global swap move-
ments between different temperatures. The general crite-
rion for choosing the swapping frequency is to follow the
higher-temperature simulations until they jump over dif-
ferent energy basins. This timescale can be quantitatively
estimated by the integrated autocorrelation time  of the
Markov process.16

Actually, all of these three parameters are interrelated
and are dependent on considered systems. In our SICHO
model system, we have performed a number of initial runs
on a set of 13 test proteins (i.e., those marked with * in
Table II) and optimized all three parameters, the results of
which are summarized in Table I. We show in Figure 2 the

histograms of energies of all Nrep replicas for 1mba_, the
longest protein sequence in our protein set. Indeed, the
low-temperature replicas mainly explore the low-energy
structures of the protein system, and the high-tempera-
ture processes serve to transform the composite ensemble
from one region of the energy phase space to another. The
intermediate temperatures replicas serve to facilitate com-
munication between these high- and low-temperature
replicas.

RESULTS AND DISCUSSION

Throughout this article, we apply the proposed algo-
rithm to the SICHO protein model.8 In this model, the
conformation of the protein chain is specified by the
coordinates of the center of mass of the side-chains and the
backbone �-carbons. These interaction centers are located
on an underlying three-dimensional cubic lattice system
with a lattice spacing of 1.45 Å. Depending on the identity
of two consecutive residues, the associated main-chain
conformation and the rotameric state of the side-chain, the
virtual bonds are of variable lengths ranging from 4.35 to
7.94 Å . This covers the distribution seen in real proteins
with good fidelity. There are 646 allowed bond vectors.
With this geometric presentation, all PDB structures could
be represented with an average RMSD of about 0.8 Å.18

The force field of our SICHO protein model consists of
three types of terms. The first terms are sequence-
independent contributions that provide biases to regular
secondary structures, penalties on nonprotein-like confor-
mations, hydrogen-bond interactions, and a centrosymmet-
ric potential. The second terms are sequence-specific contri-
butions that consist of a weak bias toward the predicted
secondary structure, a sequence-dependent short-range
geometric bias for fragments, and a protein-specific pair-
wise potential. Finally, there are the tertiary restraints for
long-range contacts and short-range distances, which are
derived from threading and multiple-sequence align-
ments.18 In all these analyses, those PDB19 structures
whose sequences are similar to the objective 65 test
sequences have been removed from the structural data-
base (at greater than 25% sequence identity). Detailed
descriptions and analysis of the construction of the model
force field have been recently published.7,8,18,20,21

Minimum Energy and RMSD of 25 Test Proteins

We first apply the PHS algorithm to a test set of 25
proteins that cover a range of lengths from 44 to 146

TABLE I. Monte Carlo Parameters of Parallel Hyperbolic
Sampling†

Tlow[ε0/kB] Thigh[ε0/kB] Nswap Nrep

N � 50 0.2 1.3 300 40
50 � N � 100 0.3 1.3 300 40
N � 100 0.4 1.3 500 40
†The parameters are optimized according to a number of test runs on
the 13 proteins listed in Table II. N is the number of residues of the
calculated sequences.
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residues (see Table II). Two hundred MC sweeps are
performed for each protein, each sweep consisting of Nswap

units of local movements in each replica. In each update of
local movement, we trace and record the protein’s energy
of every configuration and the RMSD from its X-ray
structure. As a comparison, we also perform normal rep-
lica sampling simulations on the proteins for the similar
CPU time, where all the MC parameters of the RS
simulations have been optimized in previous articles.8,21

In columns 3 and 4 of Table II, we calculate the average
energy of the lowest-temperature replica [E(T1)], because
low-energy structures are usually explored by this replica,
according to Figure 2. In columns 5 and 6, we trace and
record the minimum energy Emin that the simulations of
all replicas ever reach. In columns 7 and 8, we divide the
whole sample into 20 subsamples and record the minimum
energy separately in each subsample. [Emin]20 denotes the
average of the minimum energies found in these 20
subsamples. Except for 1a32_, which does not fold to the
native state in our model, PHS can find lower-energy
structures than RS in all the cases.

In columns 9 and 10 of Table II, we list also the lowest
RMSD from the native structure ever found in both
simulations. Again, smaller RMSD structures can be
found by parallel hyperbolic sampling in most cases. This
indicates that PHS can explore a larger phase space in the

same amount of computation time, compared with the
regular replica sampling.

As an example, we compare in Figure 3 the time series of
the energy and RMSD of 1mba_ sequence of the lowest-
temperature replica, produced, respectively, by PHS and
by the RS simulations. Obviously, the RS simulation is
stuck in some higher-energy regions and its structure
fluctuates in a region of phase space that is quite far away
from the native state.

Structure Prediction of 65 Benchmark Proteins

In our prediction experiment, we take the same set of 65
proteins as used previously.7 Among this protein set, there
are 4 small proteins with little secondary structure, 21
�-helical proteins, 20 �-sheet proteins, and 20 �/� pro-
teins, following the CATH classification.22 The proteins
range in length from 39 to 146 amino acids.

For each protein, we perform a number of Monte Carlo
runs based on the PHS algorithm, each run starting from
different initial random numbers. We set up a structure
pool by picking structures from snapshots of MC processes.
In principle, the time interval between selected neighbor-
ing snapshots should be long enough so that they are
structurally uncorrelated. This approximately corre-
sponds to the integrated autocorrelation time  (�Nswap).16

In our case, we pick up one snapshot after each MC sweep

TABLE II. Comparison of Low-Energy States and Minimum RMSD From PHS and RS†

ID Length

�E(T1)� Emin �Emin�20 RMSDmin

RS PHS RS PHS RS PHS RS PHS

1fc2C 44 �354.7 �364.5 �397.2 �412.1 �386.5 �401.2 2.802 2.628
*1gpt_ 47 �403.2 �418.6 �454.5 �454.6 �441.3 �441.4 2.139 1.993
*1tfi_ 50 �396.2 �427.9 �445.5 �464.2 �436.0 �455.6 2.865 2.834
1bq9A 53 �427.9 �458.0 �482.1 �487.0 �466.7 �472.5 3.927 3.899
1vif_ 60 �447.0 �471.3 �510.1 �518.5 �489.1 �503.1 3.013 2.554
*1fas_ 61 �605.1 �645.7 �664.3 �688.7 �650.3 �676.5 3.341 2.589
1ctf_ 68 �571.9 �594.0 �636.9 �647.3 �607.0 �632.7 8.643 8.820
*1ftz_ 70 �608.8 �621.7 �687.4 �689.7 �661.4 �667.2 4.307 4.103
*1ah9_ 71 �645.8 �671.0 �711.4 �726.9 �690.2 �710.0 7.181 4.435
1lea_ 72 �739.4 �765.4 �809.2 �818.5 �788.7 �799.5 2.141 2.108
1kjs_ 74 �588.4 �603.8 �663.5 �666.0 �632.2 �656.7 4.790 4.553
*1ner_ 74 �622.9 �624.6 �698.8 �699.9 �649.4 �659.8 4.368 4.354
*1a32_ 78 �700.5 �701.8 �803.1 �776.8 �753.4 �747.6 10.381 10.546
*1aoy_ 78 �796.4 �827.7 �868.0 �873.7 �846.6 �849.0 3.457 3.127
1wiu_ 93 �1036.8 �1126.3 �1117.6 �1184.5 �1090.2 �1148.3 2.845 2.638
2ezk_ 93 �718.8 �735.1 �779.5 �829.4 �750.3 �803.0 5.344 1.844
1tsg_ 98 �724.3 �754.2 �797.2 �817.9 �781.5 �798.9 8.795 8.525
1ksr_ 100 �896.8 �967.8 �987.7 �1032.8 �954.1 �1005.3 4.241 3.087
*2lfb_ 100 �773.3 �778.0 �864.1 �872.4 �841.9 �844.0 7.548 7.557
1tlk_ 103 �1207.6 �1250.5 �1285.9 �1320.5 �1261.4 �1282.0 2.525 1.256
*1hmdA 113 �1144.8 �1219.8 �1262.6 �1311.3 �1211.5 �1283.6 2.700 2.632
*1pdo_ 121 �1131.4 �1141.7 �1238.6 �1244.2 �1209.0 �1229.6 4.896 4.244
*4fgf_ 121 �1008.5 �1048.3 �1112.2 �1144.6 �1079.7 �1111.9 7.862 6.726
1hlb_ 138 �1464.2 �1642.9 �1682.2 �1758.8 �1544.7 �1702.7 4.330 2.891
*1mba_ 146 �1430.9 �1658.1 �1655.7 �1813.3 �1512.1 �1713.5 4.475 2.726
Average 85 �777.8 �820.7 �864.6 �890.1 �829.4 �863.8 4.757 4.107
†In each column, the values on the left are obtained by replica sampling (RS) and those on the right by the parallel hyperbolic sampling (PHS)
method. Each MC run consists of 40 replicas and 200 MC sweeps in each replica. The unit of energy is in ε0 and the RMSD is in angstroms. The
proteins marked with * have been used to tune the Monte Carlo parameters found in Table I.
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(i.e., Nswap units of local movements. Because the near-
native structures are most likely explored in low-tempera-
ture replicas, we only pick structures for the lowest-
temperature replica. In each Monte Carlo run, we perform
800 sweeps. Therefore, there are 800 structures in each
trajectory. A structure pool can include more than one
trajectory depending on the number of performed Monte
Carlo runs.

Because of the imperfections in the current potential,
usually we cannot reliably obtain the native fold by
choosing the lowest-energy structure. Having in mind
that, for a reasonable force field, the partition function of a
near-native state should be significantly larger than that
of non-native states; thus, here we look for the common
folds by clustering all the configurations in our structure
pool and choosing the centroid of the selected cluster. To
determine the degree of convergence, clustering is done in
two steps. First, the clustering is done in each trajectory,
and then the obtained centroids in different trajectories
are again clustered.23 If there is only one trajectory in the
structure pool, only the first step of clustering is needed.

As a test, we first perform 50 PHS Monte Carlo runs on
each of a small set of test proteins (see Fig. 4). We then
subject different number of trajectories to the clustering
process. Figure 4 shows the clustering result as a function
of the number of subjected trajectories. Although the total

number of resulting clusters increases with the number of
trajectories, the quality of the clusters (i.e., the smallest
RMSD of the produced clusters) does not improve with an
increasing number of Monte Carlo runs. Our unpublished
data show the RS simulation does not have this feature,
and at least 50 trajectories are needed to obtain the best
RMSD values.† This may indicate that the thermalization
of PHS simulation is much faster so that only one PHS
trajectory is sufficient to explore all the important areas of
conformational space. In other words, the best structure
can be safely obtained in each PHS simulation within a
sufficient simulation time. On the basis of this finding, we
will run only one trajectory for each protein in the follow-
ing calculations.

In column 5 of Table III, we show the predicted results of
the PHS simulation. The shown value is the smallest
RMSD from the native structure among all the cluster
centroids. The first value in parentheses is the order
number of the best cluster, where the clusters have been
ordered according to the average energy of the structures
within the cluster and the second value in parentheses is
the total number of produced clusters. In column 4, we also
show the predicted results of the RS simulation of 50
trajectories, which is taken directly from our previous
article.7 In the RS simulation, there are 46 cases among all
65 proteins, in which the RMSD of the best cluster (in the

Fig. 2. Energy histogram of different replicas of a representative run of parallel hyperbolic sampling on 1mba_. Two hundred MC sweeps are
performed in each replica.
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top five clusters) is below 6.5 Å. This number increases to
50 when PHS is used. By experience, when the RMSD of a
predicted structure is less than 6.5 Å, the topology of the
protein structure is generally correct. This means that, by
using the same potential, PHS can successfully predict
more protein structures (4 of 65), whereas the CPU cost is
less. We have also set the threshold of “successful” RMSD
from native to 6.0, 5.0, 4.0, and 3.0 Å, respectively. PHS
can obtain a higher number of successful predictions in all
the cases (see the last five rows of Table III).

In Figure 5, we show four examples in which the PHS
approach has significantly improved the quality of the
calculated structure of the RS simulation. The RMSD from
native of these predicted structures obtained by the RS
method are, respectively, 10.2 Å (2ezk_), 8.0 Å (1stu_), 5.4
Å (1tlk_), and 8.6 Å (2af8_); the corresponding values
calculated by the PHS approach are, respectively, 4.5 Å
(2ezk_), 5.7 Å (1stu_), 3.1 Å (1tlk_), and 4.4 Å (2af8_). None
of these four cases belongs to the test set of 13 proteins on
which we took initial runs for tuning the MC parameters of
the PHS simulations.

Common Structure by Different Search Engines

In limited CPU time, different search engines may
explore different parts of structure phase space. It is of
interest to check whether these two simulations using
PHS and RS search common structure clusters and whether
the identification of the common structures can give any
hint to the quality of a blind fold prediction. One way of
attacking this problem is to calculate the relative root-
mean-square deviation (rRMSD) between these two sets of
clusters and identify the common fold by looking for the
cluster pair with the minimum rRMSD (mrRMSD).

In Figure 6, we calculate the correlation between the
calculated RMSD from native and the mrRMSD by PHS
and RS simulations. To reduce the statistical error, we
average the calculated RMSD over those proteins whose
mrRMSD stays in the range (mrRMSD0�0.8, mr-
RMSD0�0.8]. The data in Figure 6 show an obvious

Fig. 3. Comparison of the time series of the energy and RMSD from
native of the lowest-temperature replica of 1mba_ obtained by replica
sampling (dashed lines) and by parallel hyperbolic sampling (solid lines).
Two hundred Monte Carlo sweeps are performed in each case.

Fig. 4. RMSD of the best cluster from native and the total number of
clusters as a function of the number of trajectories run using the parallel
hyperbolic sampling algorithm. The data are taken from the average of the
shown proteins. Each trajectory includes 800 Monte Carlo sweeps.
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TABLE III. Summary of Prediction Results on 65 Benchmark Proteins†

ID Structural type Length RS PHS Lowest energy

Comparison of RS and PHS

50 RS samples 1 RS sample

1a32_ � 85 7.4 (1/4) 6.4 (3/3) 8.0 8.0/2.4 (1) 8.0/2.3 (1)
1ah9_ � 71 7.5 (7/8) 6.8 (1/3) 6.8* 6.8/4.9 (1)* 10.8/6.9 (2)
1aoy_ � 78 4.5 (1/5) 4.4 (1/3) 4.4* 4.4/1.4 (1)* 4.4/1.4 (1)*
lbq9A � 53 6.9 (1/8) 6.4 (7/8) 9.7 9.7/4.3 (1) 9.7/3.9 (1)
1bw6A � 56 5.0 (1/7) 7.2 (1/3) 7.2* 11.5/2.4 (2) 7.2/2.6 (1)*
1c5a_ � 66 5.8 (3/6) 4.8 (1/3) 4.8* 4.8/1.6 (1)* 4.8/3.0 (1)*
1cewI �/� 108 7.2 (1/5) 5.8 (1/3) 5.8* 5.8/4.2 (1)* 5.8/5.0 (1)*
1cis_ �/� 66 4.8 (2/6) 4.4 (2/3) 4.4 4.4/3.9 (2)* 4.4/3.8 (2)*
1csp_ � 64 3.6 (1/7) 4.7 (1/3) 4.7* 4.7/3.7 (1)* 4.7/3.7 (1)*
1ctf_ �/� 68 9.6 (2/5) 10.2 (2/2) 12.0 12.0/2.6 (1) 12.0/2.2 (1)
lerv_ �/� 105 2.3 (1/2) 2.2 (1/4) 2.2* 2.2/1.1 (1)* 2.2/1.2 (1)*
1fas_ � 61 3.4 (1/3) 3.7 (1/2) 3.7* 3.7/1.6 (1)* 3.7/1.6 (1)*
1fc2C Small 44 3.6 (2/2) 3.4 (2/2) 7.0 7.0/1.0 (1) 7.0/1.1 (1)
1ftz_ � 70 2.9 (1/2) 2.9 (1/3) 2.9* 2.9/0.6 (1)* 2.9/0.6 (1)*
1gpt_ �/� 47 3.4 (2/4) 2.6 (1/1) 2.6* 2.6/1.7 (1)* 2.6/1.7 (1)*
1hlb_ � 138 2.6 (1/9) 2.7 (1/4) 2.7* 2.7/0.4 (1)* 2.7/0.5 (1)*
1hmdA � 113 2.6 (1/5) 2.4 (1/1) 2.4* 2.4/0.9 (1)* 2.4/1.0 (1)*
1hp8_ � 68 4.9 (1/2) 4.5 (1/3) 4.5* 4.5/0.9 (1)* 4.5/1.0 (1)*
1ife_ �/� 91 6.3 (3/10) 8.7 (1/2) 8.7* 8.7/3.9 (1)* 8.7/3.7 (1)*
1ixa_ Small 39 4.5 (2/7) 4.1 (2/5) 7.6 8.2/2.3 (3) 8.2/2.4 (3)
1iyv_ � 79 10.6 (3/11) 8.5 (2/2) 9.1 9.1/8.9 (1) 8.5/8.3 (2)*
1kjs_ � 74 4.5 (1/6) 4.8 (1/2) 4.8* 4.8/1.5 (1)* 4.8/1.7 (1)*
1ksr_ � 100 5.1 (1/9) 4.7 (1/1) 4.7* 4.7/2.3 (1)* 4.7/2.1 (1)*
1lea_ � 72 3.7 (1/5) 3.2 (1/1) 3.2* 3.2/1.4 (1)* 3.2/1.4 (1)*
1mba_ � 146 2.7 (1/3) 2.4 (1/4) 2.4* 2.4/1.3 (1)* 2.4/1.9 (1)*
1ner_ � 74 4.1 (1/6) 4.5 (4/5) 5.8 10.3/1.9 (3) 10.8/3.5 (2)
1ngr_ � 85 2.7 (1/3) 2.4 (1/3) 2.4* 2.4/1.7 (1)* 2.4/2.1 (1)*
1nkl_ � 78 3.0 (1/5) 3.4 (1/3) 3.4* 3.4/1.7 (1)* 3.4/1.8 (1)*
1nxb_ � 53 3.6 (3/3) 4.9 (2/2) 6.8 4.9/1.2 (2)* 4.9/2.7 (2)*
1pdo_ �/� 121 6.5 (2/2) 6.6 (2/7) 9.1 9.1/2.4 (1) 9.1/2.0 (1)
1pgx_ �/� 56 2.3 (1/4) 2.2 (1/8) 2.2* 2.2/0.9 (1)* 2.2/0.8 (1)*
1poh_ �/� 85 3.3 (1/5) 2.7 (2/2) 10.4 2.7/1.0 (2)* 2.7/1.2 (2)*
1pou_ � 71 3.7 (1/10) 3.3 (1/4) 3.3* 3.3/2.1 (1)* 3.3/2.1 (1)*
1pse_ � 69 8.4 (4/6) 8.1 (2/9) 12.9 8.1/2.6 (2)* 10.1/3.3 (3)
1rip_ � 81 9.3 (5/21) 11.1 (1/6) 11.1* 11.2/2.9 (3) 11.2/2.5 (3)
1rpo_ Small 61 3.7 (4/4) 9.6 (3/3) 10.9 10.9/0.7 (1) 10.9/0.1 (1)
1shaA �/� 103 3.6 (1/14) 3.3 (1/1) 3.3* 3.3/2.4 (1)* 3.3/2.4 (1)*
1shg_ � 57 4.9 (1/8) 4.3 (1/1) 4.3* 4.3/4.1 (1)* 4.3/4.3 (1)*
1sro_ � 66 6.4 (2/6) 5.4 (2/3) 9.3 5.4/4.5 (2)* 5.4/3.9 (2)*
1stfI_ �/� 98 7.1 (5/5) 5.7 (3/6) 12.6 5.7/3.1 (3)* 5.7/2.6 (3)*
1stu_ �/� 68 8.0 (4/10) 5.7 (3/3) 10.0 8.2/2.9 (2) 8.2/2.5 (2)
1tfi_ � 50 4.3 (4/5) 4.5 (2/2) 8.3 8.3/1.1 (1) 4.5/1.6 (2)*
1thx_ � 108 2.2 (1/5) 2.7 (1/1) 2.7* 2.7/1.6 (1)* 2.7/1.6 (1)*
1tit_ � 89 2.4 (1/3) 2.0 (1/5) 2.0* 2.0/1.4 (1)* 2.0/1.3 (1)*
1tlk_ � 103 5.4 (1/2) 3.1 (2/2) 4.1 3.1/4.7 (2)* 3.1/5.1 (2)*
1tsg_ �/� 98 8.7 (1/7) 9.9 (3/17) 11.6 13.1/8.7 (12) 9.9/8.3 (3)*
1ubi_ �/� 76 3.6 (1/8) 2.9 (2/2) 3.8 3.8/0.4 (1) 3.8/0.5 (1)
1vcc_ �/� 77 9.9 (1/6) 8.4 (1/9) 8.4* 10.8/5.3 (4) 12.0/5.7 (9)
1vif_ � 60 4.4 (2/12) 3.4 (1/3) 3.4* 3.4/3.2 (1)* 3.4/3.1 (1)*
1wiu_ � 93 2.6 (1/3) 2.7 (1/2) 2.7* 2.7/1.4 (1)* 2.7/1.3 (1)*
256bA � 106 3.4 (1/3) 3.7 (1/1) 3.7* 3.7/1.8 (1)* 3.7/1.6 (1)*
2af8_ � 86 8.6 (8/10) 4.4 (1/6) 4.4* 11.5/7.5 (4) 11.5/8.8 (4)
2azaA � 129 4.5 (1/3) 3.7 (1/2) 3.7* 3.7/3.7 (1)* 3.7/4.2 (1)*
2bby_ � 69 4.9 (1/5) 4.1 (1/3) 4.1* 4.1/3.2 (1)* 4.1/3.4 (1)*
2ezh_ � 65 5.2 (2/6) 4.6 (2/3) 6.8 4.6/3.2 (2)* 6.8/6.6 (1)
2ezk_ � 93 10.2 (7/8) 4.5 (6/6) 12 13.8/4.6 (4) 13.8/4.7 (4)
2fdn_ �/� 55 9.6 (4/10) 8.7 (7/7) 10.8 10.4/5.7 (2) 10.4/5.6 (2)
2fmr_ �/� 65 3.7 (1/2) 3.8 (1/2) 3.8* 3.8/1.0 (1)* 3.8/1.2 (1)*
2lfb_ � 100 4.9 (9/10) 5.6 (8/9) 11.3 10.1/1.6 (7) 9.8/3.0 (2)
2pcy_ � 99 4.0 (1/4) 3.0 (1/2) 3.0* 3.0/3.1 (1)* 3.0/2.8 (1)*
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Fig. 5. Structures of four representative examples in which the quality of the predicted structures is significantly improved by parallel hyperbolic
sampling (left) compared with that obtained by replica sampling (right). The backbone of predicted structures are shown in thick lines, and that of native
structures in thin lines.

TABLE III. (Continued)

ID Structural type Length RS PHS Lowest energy

Comparison of RS and PHS

50 RS samples 1 RS sample

2ptl_ �/� 60 2.5 (1/3) 2.9 (1/3) 2.9* 2.9/1.0 (1)* 8.8/1.1 (2)
2sarA �/� 96 4.1 (1/6) 4.3 (1/2) 4.3* 4.3/2.5 (1)* 12.1/3.4 (2)
4fgf_ � 121 9.7 (1/5) 9.3 (2/3) 12.1 12.1/4.8 (1) 12.1/5.9 (1)
5fd1_ �/� 106 9.7 (4/5) 10.3 (3/6) 13.3 10.3/8.6 (3)* 13.7/8.5 (2)
6pti_ Small 57 7.2 (5/7) 6.6 (1/2) 6.6* 9.2/2.5 (2) 9.2/3.9 (2)
Average 80.6 5.25 (2.1/6.0) 4.99 (1.8/3.6) 6.21 6.06/2.77 6.29/3.02
Total numbers:
RMSD � 6.5 46 50 37 40 38
RMSD � 6.0 44 48 37 40 38
RMSD � 5.0 40 43 35 37 35
RMSD � 4.0 25 26 23 25 24
RMSD � 3.0 11 15 13 14 13
†In columns 4 and 5 are the RMSD of the best cluster centroid from the native structure calculated by RS and PHS simulations, respectively. The
first number in parentheses denotes the order number of the best cluster, and the second number in parentheses is the total number of produced
clusters. In column 6 is the predicted RMSD if we choose the first cluster (i.e., the lowest-energy cluster in PHS simulation). In column 7 is the
predicted RMSD if we choose the PHS cluster that has the mrRMSD from the clusters formed in the 50 RS trajectories; the second value is the
mrRMSD, and the number in parentheses denotes the order number of the chosen clusters. Column 8 is similar to column 7, but RS clusters are
produced in one randomly chosen trajectory. In columns 4–8 denotes the best cluster is chosen in given approach. The last five rows show the
number of proteins whose predicted RMSD is below the respective threshold values shown in column 1. The units of both RMSD and mrRMSD are
in angstroms.



correlation of the average RMSD and mrRMSD0. By fitting
the data to the equation

�RMSD� � c*mrRMSD0 � b (4)

We obtain c � 0.76 � 0.11. This correlation indicates that,
when a common fold can be found by different search
engines, the predicted fold is more likely to be successful
than the cases when no common fold is found. In this
context, the value of mrRMSD by different search engines
may be considered to be a possible indicator of the likeli-
hood of successful fold predictions.

Because the cluster with the best structure(s) does not
always correspond to the cluster of the lowest energy, the
correct identification of the closest to native is a nontrivial
issue. In the PHS simulation, there are on average 3.6
clusters for each protein, and the average order number of
the best cluster is 1.8. These two numbers are 6.0 and 2.1
in the RS simulations, respectively. Obviously, this advan-
tage of PHS sampling is important because it increases the
probability of the identification of the best structure from
the clusters.

In our simulations, we can identify the best cluster
closest to the native in 39 cases from 65 benchmark
proteins if we choose the lowest-energy cluster. As a proof
of the above-mentioned correlation, we find that choosing
the cluster of mrRMSD in the PHS sample is more
favorable than choosing the lowest-energy cluster. For
example, if we compare the PHS and RS samples of all the

50 trajectories and choose the cluster of mrRMSD, we can
identify the best cluster in 43 cases (column 7 in Table III).
If we take randomly one trajectory from replica sampling
and do the comparison with PHS, we can identify the best
cluster in 41 cases (column 8 in Table III). As shown in the
last five rows of Table III, in both cases, the numbers of
successful predictions by the comparison are also slightly
higher than that of choosing the lowest-energy cluster.

CONCLUSIONS

In this work, we have extended replica sampling Monte
Carlo method through the local flattening of the high-
energy barriers by an inverse hyperbolic sine function,
thus allowing a single replica simulation to more quickly
explore the low-energy basins of the protein’s energy
landscape. We have applied the proposed algorithm to the
simulation of the SICHO protein model and find that PHS
significantly reduces the CPU time required to effectively
sample conformational space compared with regular rep-
lica sampling. After clustering the produced structures, we
can successfully predict, among 65 test proteins, 50 cases
in which at least one of the top five clusters has a RMSD
from the native structure below 6.5 Å compared with 46
cases using canonical replica sampling requiring more
CPU time. This is also at least partially suggestive that
the force field is not as poor as we originally thought; with
better sampling, better structures are obtained on aver-
age, an encouraging result.

To identify the correct near-native structure in the
simulation, we calculate the mrRMSD between the clus-
tered structures produced by the two distinct sampling
schemes PHS and RS. We find that choosing the common
cluster by different search engines can increase the predic-
tion accuracy, compared with that of choosing the lowest-
energy cluster. A correlation coefficient of about 0.76 is
found between the RMSD of a predicted structure and the
mrRMSD. This correlation may be useful in blind fold
prediction to use the value of mrRMSD as a possible
indicator of the quality of the prediction structures.

It should be mentioned that a drawback of PHS, in
contrast with other algorithms such as RS, is that because
the energy landscape is dynamically changed in each
update, no thermodynamic expectation can be calculated
from the simulation. Thus, for systems having a relatively
smooth energy landscape or in the presence of a very
efficient move set, PHS may not be more efficient than
other competing methods. However, in many realistic
optimization problems where the thermodynamic behav-
ior is not the main focus of the calculation, parallel
hyperbolic sampling can be a useful search protocol to
identify the very low energy states. Such is the case here,
and we plan to exploit this speed up by predicting the
structure of all the small proteins in a number of genomes.
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